CENTER FOR SOFTWARE ENGINEERING
ADVANCED SOFTWARE TECHNOLOGY

AD-A223 085

Subject: Final Report - Transportability Guideline
for Ada Real-Time Software

i BT
:3 B P

: 1
CIN: C02 092LA ooo% |
—_ 31 MAY 1989 & .

s en T N
JUNG T A

895382

|

-

TRANSPORTABILITY GUIDELINE FOR
ADA REAL-TIME SOFTWARE

PREPARED BY:

LABTEK CORPORATION
8 LUNAR DRIVE
WOODBRIDGE, CT 06525

SPONSORING ORGANIZATION:

U.S. ARMY HQ CECOM
CENTER FOR SOFTWARE ENGINEERING

DATE:

24 APRIL 1989

CONTRACT NO. DAAL03-86-D-0001

DELIVERY ORDER NUMBER: 0731
SCIENTIFIC SERVICES PROGRAM

The views, opinions, and/or findings contained in this report are those
of the author and should not be construed as an official Department of
the Ammy position, policy, or decision, unless so designated by other
documentation.

Table of Contents

1. IREPOAUCLIONcocnnrniccnen ettt neesessseesetersasaees s s sssssses e e e sesssasese s benssessasassersbeasssbcanasans 1
L1 BACKBIOUNAuooeieiceceitrenteseeneaeseesessese s seseeesasssessensssssesssssesesssssssssssnesssssssossannses 1

1.2 Purpose and INLENLccoveevereieniiienrneensanssssssssssssssssasssssssssssscssassssssosssssssssssssossasesenes 1

1.3 Intended Audience Cetereerae et e st n R st sRs RSt E oA SRS R bbb e RS R SRR R Rt 2

1.4 Organization of DOCUMENLcccocumirrireeeierninsesenssnsesasscscarcsssesssssesssssnsssss ssssasane 2

2. APPIOACKH ...ttt ettt sttt s e s R e b bbbt b e b e R e ane 3
3. Technical DESCUSSIONcovemeeienicecre e rebe e ee s b st st s e sas s st st e b eb et et naensranes 4
3T DEfIMILIONS ..ottt r et a sttt at s sttt sre s et ssessses 4
T30 Transportability ..ottt et s 4

312 REUSADIY vttt eeseseseeae st see s cnensenssanacs 6

3.1.3 Distinction Between Transportability and Reusability ..o 6

3.2 Ada and Transportability ... et ananee 7

4. Transportability Considerations for Real-Time SysStemscccccevvirrveeenencncnrnennrcnenns 9
4.1 Transportability vs. COMPICNILYcc.ooviriiivercrererreereecaernre et eease s seene 9

4.2 Transportability vs. PerfOrmancevueeneeeienerinescecneesesesesssesesesessesenes 9

S. Transportability GUIdelineccoooovieiieeiereretereceeretrienstnrersiseseersre s s erssssesesessesesensens 16
5.1 Erroneous Proérams and Incorrect Order Dependenciesoccoeevivivceneinnnnnnnn. 17

5.2 SOTABE ISSUES ...ttt et eb e s e e n b e s b e s s et st en et taes 18

5.3 PerfOrmance ISSUCSccooverinririeiirree et cesssse st e s sss s sss s sesasnesasesens 19

5.4 TaSKING ISSULS ..ottt sssas st s sa e saa s s s s saas s e s s sans s sens 20

5.5 Interrupt Processing ISSUCScccooviiiireeieicieietnseseresessaesssssesasesessssnsssssssssssnsnssess 2

S.6 NUMEEIC ISSULS ..ottt s s sssesa et sas s e sttt s s s nasas s ene s se)

5.7 SUDPrOram ISSUCScccooiiivniririririrecerire e e ettt sasaan st ae e s s s ssa e e s s en 24

S.8 INPUL/OULPUL ISSULSceoviiieiiiicieercee ettt essess e e asases s abesssessaessresasasasesaseseses o)

Table of Contents

5.9 OtREr ISSURS ...uucuueiriencecnneiirirsrsisresssneeessassesssssssssssassssassssssessssssessssssesssasstssessssssisssses 26
0. SUMMATY ..ottt e T st ses s se e s a s s et st s s sas st sesanaossssbsssnetsarstsesesssesntass 29
T. REIETEINCESoonceiieeenraceinesensenanasse s ssasss st sssas st snas s seasasssssasastesasnessssssnssssastasassrasscnsrassas 30
8. GIOSSATY ...ttt saes s s rebesses s e bbb s b s s sessssessaesessbasaaebetesasasssseneaeassessaranasas 31
9. Appendix A - ImMPICMEntation TESLScoooeviivvirieicrereiieresessssereressessssssessssssssrsssesesssssesas 32
10. Appendix B - Transportability Requirements Reportc.ccoovecrvenneenennnencnricincnncnen, 60

List of Figures

1. Figure 1. Ada Runtime Environment (RTE) ... 4
2. Figure 2. Transporting an AppliCation ... ssssisesnmssiecssistseneesens 5
3. Figure 3. Reusing a Component srevevensessrenen vrereearense veevsreresaeseesansssane rrevevrereserasereneenrenes 6
‘—jccessiol;—l‘icrﬁ iy
NTIS CRA] 4\
prIc 123 L
Upann~us 1
' Justifis ’ T

Transportability Guidelines for Ada Real-Time Software

1. Introduction -

 This document r:rorts the findings of a project that analyzed issues involved with the
transporting of real-time Ada programs. -

1.1 Bacvlrtground e

Software transportability is one of the cost-saving benefits anticipated with the use of Ada.
Support for transportability was a major goal in the design of the Ada language. However,
transportability is not automatic with the use of Ada; programs written without specific
attention to transportability will not, in general, be transportagle.w)

Software must be transportable in order to take advantage of rapid changes in both
processor technology and compiler technology. The time between processor generations is
tﬁically less than three years, whereas the application software must endure for a period of
10-20 years. Current compilers are evolving rapidly. Performance gains due to optimization
are eagerly awaited in each new compiler release.

" For real-time embédded applications, -software test-on-host and integration-on-target

requires that the application program be transportable to at least two difterent computers
(typically). Programming teams must develop software on a host environment, perform as
much testing as possible on the host, and then transport the code to the target environment
for further testing and integration. Again, designing software to be transportable will be an
aid in this process. - ’ (—
Software transportability is also a prerequisite for a "Software First" methodology. This
methodology purports designing the application software without regard for the underlying
hardware. g{n the past, hardware selection was the driving cost associated with a system.
Today, the custom application software is the driving cost. Much of the hardware cun be
bought off-the-shelf.

Transportability is not an absolute, but rather a measure of degree. It is unusual to obtain
100% transportable software when working with real-time embedded applications. Rather,
the foal is to maximize the transportability in the face of other programming constraints.
Tradeoffs are frequently required to uchieve the appropriate degree of transportability while
obtaining sufficient performance and program clarity.

Transportability does not come without additional costs. Initial training of the staff must be
included in the budgeting for resources. Designing for transportability is usually more
difficult because the design is further constrained by the need to limit implementation
dependencies. The coding of the software is also hindered because the programmer must
always be concerned that each of the guidelines is met. This often rcquires writing more
complicated code to achieve the same effect. Coordination among the programmers is also
more important to maximize the commonality within a program.

1.2 Purpose and Intent

The purpose of this report is to develop an initial set of guidelines for writing transportable

Ada programs for embedded real-time applications. Three transportability guideline reports —- -

-1-

Transportability Guidelines for Ada Real-Time Software

have already been written. The first, in 1982, titled "Ada-Europe Guidelines for the
Portability of Ada Programs”, by Nissan, Wallis, Wichmann and others [2]}, and the second in
1985, titled "Ada Portability Guidelines™, by SofTech, Inc., [3]. The third report was just
recently published in February 1988 by Software Productivity Consortium, titled "Ada Style
Guide". [11) Work in this area is also currently underway at the Software Engineering
Institute. The intent of this report is not to duplicate previous work, but rather, to produce a
guideline which focuses on dealing with the implementation dependencies allowed within
the Ada language to achieve transportable software for real-time applications.

The Catalogue of Ada Runtime Implementation Dependencies (CRID), initially produced
by the Ada Runtime Environment Working Group (ARTEWG) of SIGAda, and
subsequently enhanced by the Center for Software Engineering (CSE), Fort Monmouth, NJ
[9], is an important input into this work. It details the areas of the Ada language where the
language definition has left the implementation details up to the Ada ccmpiler writer.
These are the areas of the language which will not necessarily transport. This guide will
show how to handle these implementation dependencies.

1.3 Intended Audience

The intended audience of this guide includes those individuals trying to port software,
evaluate software for transportability, or perform Ada design, code, and implementation.
This guide may also be beneficial to software project management personnel.

1.4 Organization of Document

Section one contains background information as well as the purpose and intent of this work.

Section two details the approach used to gather the information and the criteria used for its
evaluation.

Section three is a technical discussion of the following:
- Definition of transportability and its relationship to reusability for real-time
embedded applications. _
- How the Ada language enhances and/or impedes the process of producing
transportable real-time programs.
Section four discusses the interrelationship of transportability with real-time programming.
It contains representative benchmarks which demonstrate how to evaluate the relative
performance of transportable software compared with more implementation specific
software.
Section five assimilates all of the information into a guide for writing transportable Ada
software for real-time embedded applications. These guidelines are in the form of
recommendations on how to use the real-time features of Ada.
Section six contains a summary of the results.
Section seven contains the reference materials used in the creation of this report.

Section eight contains a glossary of terms used in this report.

2.

Transportability Guidelines for Ada Real-Time Software

2. Approach
The approach used to obtain the information in this report was:

1. Review the current literature, especially the ARTEWG and CSE documents [8,9], for
material relevant to this task.

2. Determine the relationship between transportability and reusability in real-time
embedded applications.

3. Demonstrate how the Ada language enhances or impedes the process of producing
transportable real-time programs.

4. Develop and execute representative benchmarks to test the performance of transportable
software using two Ada compilers hosted and/or targeted for different machines and
incorporate the results into the transportability guideline.

S. Show how transportability relates to performance in real-time embedded systems.

6. Analyze the input material obtained by steps 1-5 above and produce the guideline.

Transportability Guidelines for Ada Real-Time Software

3. Technical Discussion
3.1 Dcfinitions
3.1.1 Transportability

An Ada RunTime Environment (RTE) consists of three functional areas: abstract data
structures, code sequences, and predefined subroutines. It includes all of the runtime
support routines, the conventions between the runtime routines and the compiler, and the
underlying virtual machine of the target computer. "Virtual” is used in the sense that it may
be a machine with layered software (a host operating system). An RTE does not include the
application itself, but includes everything the application can interact with. Each layer has a
protocol between it and the layer underneath it for intertacing. In the event that there isn’t
any operating system layer (the bare- machine target), the runtime includes those low-level
functions found in an operating system. [8] See Figure 1.

L APPLICATION B

[Ada RUNTIME |

: Ada RTE
OPERATING SYSTE™ | cla

| \ HARDWARE T

Figure 1. Ada Runtime Environment (RTE)

The RunTime System (RTS) is the set of subprograms, which may be invoked by linking,
loading, and executing object code generated by an Ada compiler. If these subprograms use
or depend upon the services of an operating system, then the target runtime system includes
those portions of that operating system. [7] These predefined subroutines are chosen from
the Runtime Library (RTL) for that Ada compilation system.

For this report, "transporting software" means to change the runtime environment (RTE) of
an agplication. A change could be as small as using a different compiler or linker control, or
much larger such as moving the application to a completely new target architecture and
switching to a new compiler.

Transponability, then, is the measure of effort required to transport application software to a
different runtime environment (RTE). For a measure, if it requires 1-person month to

4.

Transportability Guidelines for Ada Real-Time Software

transport software that required 20 person months to develop, the software is said to be 95%
“transportable”. -

The shaded area in Figure 2. depicts the area of change when an application is transported.
The application does not change (the larger circle representing the Application is not
shaded), but the runtime environment does change (by definition, note the smaller shaded
circle of runtime environment 2). Portions of the application code which directly interfaces
tcl>1 the runtime environment (note the shaded box around runtime environment 2) may also
change.

APPLICATION APPLICATION

Runtime Runtime
Environment

1

Environment

A
G

Transporting an Application

Figure 2, Transporting an Application
“"here are several common reasons for software transport:

a.) A new CPU. The next processor generation could become available and in order
to take advantage of the increased processor performance it may be desirable to
replace the existing CPU with it. In some cases, it may be necessary to change
processor families altogether.

b.) A new compiler. A new version of the compiler may be released. In order to take
advantage of its new features or to keep current it may be desiruble to use this new
compiler version.

¢.) A new runtime library. The compiler vendor could supply a new version of the
runtime library. This will produce a change in the RTE.

d.) Different compiler switches are enab.ed (optimization). The same code can work
differently with different compiler switches enabled/disabled. A typical case in point
is the optimization switch. Care must be taken to insure that the application code
operates as desired after this switch is enabled.

Transportability Guidelines for Ada Real-Time Software

e.) A change in underlying operating system. If the underlying operating system
changes, this is essentially a change in the RTE. It is important to know what effect
this has on the application software-

In developing transportable software, the primary objective is to reduce the difficulty in
identifying and changing the parts of the program necessary to get acceptable program
behavior on the new target. Special attention is required to insure that the new program
does indeed perform with correct characteristics. An important goal is to force any required
implementation dependencies that are different between the two targets to be identified
during program compilation rather than during program execution.

3.1.2 Reusability

Reusability is a measure of effort required to use a software component in a new application.
In order to be effeciively reused, the component may have to be adapted to the
requirements of the new application. [4]

The shaded area in Figure 3. below depicts the area of change when a component from
Application 1 is reused in Application 2. The application itself changes (note the shading of
the large circle for Application 2), but most ot the reusable component is left intact (note
the unshaded box within the smaller circle of Application 2). There may be portions of the
reusable component which need modification (note the shaded portion of the smaller circle
of Application 2) to opcrate correctly in the new application.

/

APPLICATION 1

// CRARPLICATION 2

x X

Reusable
Component]

Reusable
Component

Reusing o Component

Figure 3. Reusing a Component
3.1.3 Distinction between Transportability and Reusability

The distinction between transportability and reusability is the following: Transpartability is
concerned with changes in the runtime environment, whereas reusability is concerned with

Transportability Guidelines for Ada Real-Time Software

changes in application. It is possible to have code that is reused, transported, or both. Often
transportability is a requirement of reuse, but not always.

There are several things to notice in the definition of transportability that make it distinct
from reusability, as noted in [4].

- Transportability is normally concerned with transporting an entire application,
whereas reusability is concerned with the reuse of a component of an application.

- When an application is transported, it is used in a new target environment; when a
component is reused, it is used in a new application.

- Reusability is concerned with dealing with a different application which uses a
component and any aspects of that component that need to change to reflect the
requirements of the new application.

- To a large extent, reusability is a design consideration while transportability is an
implementation consideration. Reusability is achieved primarily by control of the
structure of the overall system and of the nature of the interfaces between
components. Transportability is concerned more with specific use of language
features so as to avoid undesired hardware (or other target environment)
dependencies. A useful (although somewhat simplified) way to look at this is that
reusability deals with software and interface dependencies, while transportability deals
with hardware and system software dependencies.

Transportability of an application does not imply that the components oi that application are
reusable in another application. It is very likely that all components of the application could
be tightly coupled, thus preventing any one of them from being used scparately in another
application. In general, all components of the upplication will be used in all target
environments. There may be specific cases where application specific hardware interfaces
may change when transporting occurs. In this case, the software component that interfaces
with the hardware will also change.

Similarly, reusability does not imply transportability. A reusable component could be very
target dependent, e.g., an 1/O package that is reusable across all projects on one target
environment, but unusable in any other target environment.

It is important to note, however, that transportability and reusability are not mutually
exclusive properties. If it is desired to be able to reuse a component in application systems
that run on different target environments, then the component must be designed for
transportability as well as reusability. Thus, a goal of maximizing reusability will usually
include transportability as a requirement.

3.2 Ada and Transportability

The Ada language does support many concepts which aid transportability. Among these
concepts are: abstraction, encupsulation, and information hiding. Abstraction and
encapsulation are supported by the Fuckuge concept. Related subpmﬁrums can be grouped
together and seen by a higher level as a single entity. Information hiding is enforced via
strong typing, and the separation of package and subprogram specifications from their

Transportability Guidelines for Ada Real-Time Software

respective bodies. Use of Predefined Language Attributes, found in Annex A of the RM [1]
also aid transportability. -

On the other hand, the Ada language was designed to be implementation independent. The
designers of the languige chose to do this to avoid tying it to current technology, so that
advances in technology could be readily accepted. Consequently, there are many places in
the language definition where implementers of the language are free to decide how a
language feature is to be performed (as long as the feature conforms to the rules of the
language). For example, the implementer is free to choose the mechanism of parameter
passing for composite types. This choice, and all the other choices the implementer makes,
may have both positive and negative effects on an application program especially in terms of
its performance and its transportability. If the application has stringent requirements for
either performance or transportability, then knowledge about the choices made in the
various implementations will be useful.

The areas where the linguage definition has left the implementation details up to the Ada
compiler writers are called implementation dependencies. These are the areas to be
concerned about when writing software that is to be transportable.

Transportability Guidelines for Ada Real-Time Software

4. Transportability Considerations for Real-Time Systems

This section discusses the interrelationship of transportability with real-time programming.
Principal objectives for real-time programs are to keep them simple and fast. These two
objectives are sometimes in conflict with the objective of transportability.

To enhance the transportability of embedded software, some techniques can be used to
reduce the dependence on the compiler implementation. In some cases, these changes will
actually improve performance at the expense of much more complex code. In other cases,
some performance degradation can be expected. Below are the areas identified where the
design can be modified to improve transportability. They are divided into two categories:
complexity tradeoffs and performance tradeoffs.

4.1 Transportability vs. Complexity

Runtime routines to support access type allocators and manage the storage for collections
vary significantly among implementations. By limiting the execution of allocators to
program initialization and defining application specific routines to allocate and deallocate
storage, a program can control the characteristics of the dynamic storage. This approach is
useful if the purpose of dynamic allocation in the application is primarily to manage storage
rather thar trying to conserve on memory. The use of fixed size queues to manage the
storage will generally provide better performunce and transportability, although 1t may
increase the complexity of the application software. A hybrid approach may be used to use
Ada allocators to initially obtain the storage accessible via an array with elements of an
access type. After the initial allocation, the storage is managed as needed via explicit calls to
ALLOCATE and DEALLOCATE procedures defined in an application package. This can
eliminate any dependence on the ability of the runtime to efticiently allocate and reclaim
storage. This technique is not convenient when storage is shared among many different data
types since it will require unchecked type conversions of the access types. Also
unconstrained types are impractical to manage this way. Fortunately, there are many cases
where fixed size buffers need to be made available for some unspecified period and then
returned to a buffer pool. This type of application is fairly easy to implement and will
provide predictable behavior.

Another example of adding complexity is with file management routines. Temporary files
(as defined by Ada) need not be deleted in the sume way by all implementations. Therefore,
rather than using temporary files, a specific mechanism to create a unique filename and
explicitly create and delete is preferable. This is unlikely to change the execution time
significantly but does require more programming effort. Problems may arise are in creating
a unique file name (that is suitable for many file systems), and making sure the application
defined "temporary” files are deleted, even when the program is terminated by an exception.

4.2 Transportability vs. Performance

Applications that process external files will have difficulty in transporting anything other
than strictly ASCII representations of data. By performing all input/output as ASCII text
sirings, dependence on the binary representation of the types is removed. For enumeration
types, use 'POS/’VAL and transfer them as ASCIl numbers. The following benchmark
measures the relative performance of writing integers as binary values as opposed to a more
transportable representation of ASCII numbers. The results of this benchmark indicated a

Transportability Guidelines for Ada Real-Time Software

2:1 performance degradation due to using ASCII values rather than binary. Note also that
the file size was a factor of 3:1 for ASCII text compared to binary.

-~ Transportability Performance Test

-- This test is designed to measure relative performance of two different
-- representations of integer data for the purposes of transportability.

-- TEST: Representation of Integer Data

-- The program writes out 10,000 values of an INTEGER type to disk and
-- the writes out the same data as TEXT so that it is more transportable.
-- Between each action thc clock is read and the interval is displayed.

with Text_I0;
with Sequential_I0;
with Calendar;

procedure Trans_I0 is
package BINARY_IO is new Sequential _[OCINTEGER);
BINARY_FILE : BINARY_IO.FILE_TYPE;

package Int_l0 is new Text_l10.Integer _IO(INTEGER);
INTEGER_FILE : Text_IC.FILE_TYPE;

INTEGER_VALUE : INTEGER := 1234;
START : Calendar.TIME;
sTOP : Calendar.TIME;
BINARY_TIME : DURATION;
TEXT_TIME : DURATION;

package Duration_I0 is new Text_l0.Fixed_IO(DURATION);

begin
BINARY_IO.Create(BINARY_FILE,BINARY_10.0UT_FILE, "BINARY.DAT");
Text_10.Put_Line("Writing binary data:");
START := Calendar.Clock;
for 1 in 1..10000 loop

BINARY_10.Write(BINARY_FILE, INTEGER_VALUE);

end loop;
STOP := Calendar.Clock;
Text_10.Put Line("B8inary Data Written");
BINARY_10.Close(BINARY_FILE);
BINARY_TIME := Calendar."-"(STOP,START);
Text_[O.Put("Time to Write BINARY data: ");
Duration_[0.PUt(BINARY_TIME); Text_IO.New_Line;

-10-

Transportability Guidelines for Ada Real-Time Software

Text_l0.Create(lNTEGER_FlLE,Text_IO.wT_FlLE,"l:T .DAT®);
Text_l10.Put_Line("Writing text data:"); -
START := Calendar.Clock;
for I in 1..10000 loop

Int_lO.Put(INTEGER_FILE, INTEGER_VALUE);
end loop;
STOP := Calendar.Clock;
Text_10.Put_Line("Text Data Written*);
Text_10.Close(INTEGER_FILE);
TEXT_TIME := Calendar."-"(STOP,START);
Text_10.Put("Time to Write TEXT data: ");
Duration_IO0.PUt(TEXT_TIME); Text_10.New_Line;

end TRANS_1O;

Address clauses are not sugponed in a standard way among implementations. Typically,
what is desired is a linear physical address that will access hardware on the system bus. To
rovide address clauses that are transportable, a function to translate a "uniform" addressin
ormat (32-bit linear physical address) to a implementation dependent System. ADDRES
can be used. This will cause all address clauses to be nonstatic and therefore require that
indirect references be made to the object. The following program can be used to help assess
the overhead for references to objects located by nonstatic address clauses. The following
benchmark tests the performance penalty for using nonstatic address clauses. One
implementation failed to compile the benchmark (although static address clauses were
supported). The vendor indicated that this problem would be fixed in the next release.
Another implementation measured negligible performance degradation due to nonstatic
address clauses. By examining the generated code, it was determined that this

implementation always referenced objects specified by address clauses indirectly.

-- Transportability Performance Test

- This test is designed to provide insight into what relative performance
-- degradation is likely to support transiated addresses clauses (forcing
-- them to be nonstatic).

-- TEST: Address Clause Representation

-- The expression in address clauses is imp!ementation dependent, yet

-« the primary reason for address clauses ix to map program references

-- to specific HARDWARE addresses which can almost universally be expressed
-- as a linear 32-bit address (or some subs:t thereof). To enhance

-- transportability, all address clauses can be expressed as a function call
-- which accepts a 32-bit hardware address .nd returns the appropriate

-- implementation defined representation Sy-.tem, ADDRESS.

with System;

-11-

Transportability Guidelines for Ada Real-Time Software

package Transport_Functions is
function Address (ADDR : LONG_INTEGER) return System.ADDRESS;
end Transport_Functions;

package body Transport_Functions is
function Address (ADDR : LONG_INTEGER) return System ADDRESS is
begin
-- System.ADDRESS is derived from LONG_INTEGER
return System,(ADORESS(ADDR);
end Address;

end Transport_Functions;
with Text_I10;

with Calendar;

with System;

with Transport_Functions;

procedure Trins_ADDR is

START : Calendar.TIME;
STOP s Calendar.TIME;
STATIC_TIME : DURATION;

NON_STATIC_TIME : DURATION;
package Duration_l0 is new Text_l10.Fixed_IO(DURATION); .

-- first use implementation dependent approach
ADDR1 : INTEGER;
for ADDR1 use at 16#DCO00#; -- static value

-- then use transportable approach
ADDR2 : INTEGER;
for ADDRZ use at Transport_Functions.Address(16#0C000#); -- nonstatic

TEMPORARY : INTEGER;

begin
-- Use at least 20 references to reduce time attributed to loop construct
START := Calendar.Clock;
for 1 in 1..10000 loop
TEMPORARY := ADDR1;

TEMPORARY := ADDR1; -- 2
TEMPORARY := ADDR1;
TEMPORARY := ADDR1; ERN

TEMPORARY := ADDR1;

TEMPORARY
TEMPORARY

TEMPORARY :

TEMPORARY
TEMPORARY

TEMPORARY :

TEMPORARY
TEMPORARY

TEMPORARY :

TEMPORARY
TEMPORARY

TEMPORARY :

TEMPORARY

TEMPORARY :
TEMPORARY :

end loop;

Transportability Guidelines for Ada Real-Time Software

ADDRY; -- 6
ADDRY; .
ADDRY; -- 8
ADDR1;

ADDRY; -- 10
ADDR1;

ADDR1; -- 12
ADDR1;

ADDRY; -- 14
ADDR1;

ADDR1; -- 16
ADDR1;

ADDRY; -- 18
ADDR1;

ADDRY; -- 20

STOP := Calendar.Clock;

STATIC_TIME := Calendar.”-"(STOP,START);

Text_l0.Put("Time to Read Object with Static Address Clause: ");
Duration_I0,Put(STATIC_TIME); Text_10.New_Line;

START := Calendar.Clock;
for 1 in 1..10000 loop

TEMPORARY

TEMPORARY :

TEMPORARY

TEMPORARY :
TEMPORARY :
TEMPORARY :
TEMPORARY :
TEMPORARY :
TEMPORARY :

TEMPORARY
TEMPORARY

TEMPORARY :
TEMPORARY :
TEMPORARY :

TEMPORARY
TEMPORARY

TEMPORARY :
TEMPORARY :
TEMPORARY
TEMPORARY :

end loop;

ADDR2;
ADDR2; -- 2
ADDR2;
ADDRZ; -- 4
ADDR2;
ADDRZ; -- 6
ADDR2;
ADDR2; -- 8
ADDRZ;
ADDR2; -- 10
ADDR2;
ADDR2; -- 12
ADDRZ;
ADDRZ; -- 14
ADORZ2;
ADDRZ; -- 16
ADDR2;
ADDR2; -- 18
ADDR2;
ADDR2; -- 20

STOP := Calendar.Clock;

NON_STATIC_TIME := Calendar."-"(STOP,START);

Text_[0.Put(“Time to Read Object with Nonstatic Address Clause: ");
Duration_[0.PUt(NON_STATIC_TIME); Text_lO.New_Line;

end TRANS_ADDR;

Transportability Guidelines for Ada Real-Time Software

Exception propagation time is extremely implementation dependent. To avoid using
exceptions for errors that can be expected, if statements can be used to check for errors that
might otherwise be processed by exception handlers. This will give more consistent timing
to program execution since dependence on exception propagation is eliminated. The
following benchmark assumes some data is being obtained from a hardware device.
Althougﬁ the range is acceptable on input, occasionally an offset has to be added. If the
hardware is working properly, this addition would never result in an exception. Rather than
depending on the exception and the associated overhead, the error condition is explicitly
tested. The additional overhead for the check necessary to detect the error and the check to
catch propagation of the error are being measured. The cost of this approach is highly
dependent on how many checks must be made, and the size and nesting level of procedures
which perform the checks. Also, if the error flag(s) are passed as parameters rather than
lobally accessed, additional time would be consumed. Note that if exceptions are only used
or sertous failures and the response time from such an exception is not critical, the normal
Ada exception mechanism is preferred over the "flag" approach.

-- Transportability Performance Test

== This test is designed to provide insight into what relative performance
-- degradation is likely to support provide manual checking of subprogram
-- result conditions as opposed to using the built in Ada exception

-- mechanism.

-- TEST: Exceptions for standard error condition reporting
-- This test is designed to manually test a flag as opposed to using

-- exceptions to get more consistent error handling performance when
== transported.

with Text_lO;
with Calendar;

procedure Trans_Except is

== TIMING DECLARATIONS

STARY s Calendar.TINME;
sTOP : Catendar.TINME;
EXCEPT_TIME : DURATION;
FLAG_TIME : DURATION;

package Duration_10 is new Text_10.fixed_IO(DURATION);

ERROR_CONDITION : BOOLEAN := FALSE;

-14-

Transportability Guidelines for Ada Real-Time Software

type TEMPERATURE_TYPE is range 0..1000;

NORMAL_VALUE : TEMPERATURE_TYPE := 10;

RESULT : TEMPERATURE_TYPE;

limit : constant TEMPERATURE_TYPE := 800;
OFFSET_TEMP : constant TEMPERATURE_TYPE := 200;

-- sample procedure would normaliy process an incoming temperature

-« from a hardware device, which can typically range from 0 to 1000

-+ degrees, but this procedure requires the temperature to be 0 to 800
-- degrees.

procedure DO_SOMETHING(UNKNOWN_INPUT : TEMPERATURE_TYPE) is
begin
if UNKNOWN_INPUT > Llimit then
ERROR_CONDITION := TRUE;
return;
else
RESULT “:= UNKNOWN_INPUT + OFFSET_TEMP;
end if;
end DO_SOMETHING;

procedure DO_SOMETHING2(UNKNOWN_INPUT : TEMPERATURE _TYPE) is
begin

RESULT := UNKNOWN_INPUT + OFFSET_TEMP; -- simply do it, let exception occur
end DO_SOMETHINGZ;

begin
Text_l0.Put_Line("Running Exception Benchmark");
START := Calendar.Clock;
for I in 1..10_000_000 loop
DO_SOMETHING(NORMAL _VALUE);
exit when ERROR_CONDITION; -- any check for excecption in procedure
end loop;
STOP := Calendar.Clock;
FLAG_TIME := Calendar."-"(STOP,START);
Text_10.Put(“Time for transportable enception'handling: L H
Ouration_lO.PUt(FLAG_TIME); Text_lO.New_Line;

START := Calendar.Clock;
for 1 in 1..10_000_000 loop
OO_SOMETHING(NORMAL_VALUE); -- no check necessary, depend on exception
end loop;
STOP := Calendar.Clock;
EXCEPT_TIME := Calendar."-"(STOP,START);
Text_10.Put(“Time for normal exception technique: ");
Ouration_10.PUt(EXCEPT_TIME); Text_lO.New_Line;

end Trans_Except;

Transportability Guidelines for Ada Real-Time Software

5. Transportability Guideline

The following guidelines were produced-from studying the implementation dependencies
allowed within the Ada language and from utilizing work performed prior to this effort ([2],
(3], [11}). The Catalogue of Ada Runtime Implementation Dependencies [9] details the
areas of the Ada language where the Ada implementers could make design decisions as to
how a particular language feature was implemented. The catalogue should be consulted as a
further reference to this work.

It is important to reiterate the fact that this guideline is concerned with handling the
implementation dependencies allowed within the Ada language to achieve transportable
real-time embedded software. Previous guides provided useful transportability guidelines
for the language constructs, in general. It is not our intent to duplicate this work, although
there will be some overlap. The reader is referred to these reports for additional
information if needed. [2) [3r[11]

Previous guidelines typically attempted to completely restrict programs from using any
implementation dependent features of Ada. Because of the large number of
implementation dependencies, this "Greatest Common Divisor" approach is inadequate for
real-time embedded applications. This guideline instead insists that the implementation
requirements of the application are clearly specified in the source code. For example, if a
calculation requires a range of 1 to 70,000, this range must be specified for the types of those
objects. In this way, no assumptions are made with respect to capacities of the target (in the
example, the range of type "II\PTEGER"). Rather, they are verified by the compiler for each
tar(%et. This restricts transportability to compilation systems that fully support the source
code specifications. In practice this does not reduce the number of useful implementations,
since it is unlikely the real-time system would operate if the specified capability was not
properly supported and had to be constructed from other primitives.

The implementation dependencies were analyzed to determine which dependencies are
most likely to create a transportability problem. These selected dependencies were further
analyzed to determine how programs could be specified that would limit the impact of their
use. Where appropriate, benchmarks were written to determine what impact the more
transportable approach had on execution performance. Cases where the language does not
permit a translation were identified, and for these cases the most common implementation
approach was determined using vendor documentation and benchmarks (see Appendix A).
This information was synthesized and used to produce the following list of guidelines.

The general strategy is to improve the transportability of real-time programs by addressing
five major areas of concern:

1) Eliminate the need for and use of Implementation Dependencies wherever practical.

2) When dependencies are required to meet system requirements, provide a translation
from a more universal approach to the iniplementation specific approach wherever
possible. The translation function(s) would then require modification for each transport.

3) When translations are not possible, use thz simplest and most conventional approach
available. Document these so that the work of transportin% the software is clearly
understood. Pay special attention to depend :ncies that could be interpreted incorrectly
(and without any warning) by some compilaticn systems.

-16-

Transportability Guidelines for Ada Real-Time Software

4) As always, a clear design and good documentation provide the best assurance that a
program can be maintained, including transporting to new runtime environments. If ease
of transportability is especially critical, the program should be targeted to two different
processor architectures concurrently during the 1nitial development effort. This will help
to Frovide identification of problems that restrict transportability in time to correct them.
All documentation related to transporting should be collected in a document titled
"Transporting Manual". This manual serves as a collection point for implementation
dependent requirements that can not be verified by the compiler. Areas identified in this
manual shoulg be given priority during the transporting effort, as they are likely to be the
most serious to resolve. Specifically including in the manual is the "Transportability
Requirements Report” (see Appendix B) which summarizes the major implementation
dependencies of the application.

5) When possible, application specific hardware that interacts directly with the software
should be moved to the new target system along with the software. If this is not feasible,
the transported software will have to be modified to work with the new application
specific hardware. To facilitate this, modularize all application specific hardware
references so that it can be replaced easily and dependencies on it can be identified.

Before attempting to transport software, there are minimum requirements for both the
original target compilation system and the destination target compilation system.
Transporting software in their absence is extremely risky from both reliability and
cost/schedu%e perspectives. These include:

Pragmas that do not achieve their desired functions must generate a warning message.
This includes pragma "PACK", where full bit packing density is not achieved.

All representation clauses should be supported to the extent that is reasonable for the
target processor.

A reliable approach to determining task stack size must be supported.

Also, a method to obtain intermixed listings of Ada and machine code is frequently a
necessity, especially if reliability is a concern.

Specific recommendations are divided into categories to which they are most related.
5.1 Erroneous Programs and Incorrect Order IDependencies

An erroneous program is a program that is incorrect, but detection is not required by an Ada
compiler. In some cases execution will raise "PROGRAM_ERROR".

Guide(01): Programmers should be aware of what mechanisms produce erroneous

programs. Care must be taken to avoid thexe mechanisms. Checks for those constructs
should be included in code walk-throughs. The checklist should include:

-17-

Transportability Guidelines for Ada Real-Time Software

Reference to uninitialized variables

Unsynchronized access to shared data

Access of deallocated objects

Invalid unchecked conversions

Invalid change of a discriminate value

Dependence on parameter passing mechanism

Multiple address clauses for overlaid entities

Invalid suppression of exception check

Possibility of all accept alternatives closed in a selective wait without else
Reaching end of function body (without return)

] L . (] * ’ ’ ' ’ []

An incorrect order dependency is a specification for some constructs that are to be executed
in some order that is not defined by the language. This means the implementation is
allowed to execute these parts in any given order. Therefore, ditferent implementations can
produce different results.

Guide(02): Incorrect order dependencies should not exist in well designed programs. The
following is a checklist where incorrect order dependencies can occur. Check for:

Evaluation of default expressions - RM 3.2.1(15)

Range constraint evaluation - RM 3.5(5)

Index evaluation order - RM 3.6(10)

Component subtype elaboration order - RM 3.6(10)

Index constraints - RM 3.6.1(11)

Discriminate checks for incomplete types - RM 3.7.2(5)
Discriminate evaluation order - RM 3.7.2(13)

Elaboration checks and parameter evaluation - RM 3.9(5)
Evaluation of an indexed component - RM 4.1.1(4)
Evaluation of a slice - RM 4,1.2(4)

Evaluation of the component expressions of a record aggregate - RM 4.3.1(3)
Evaluation order of component associations - RM 4.3.2(10)
Order of constraint checking - RM 4.3.2(11)

Evaluation of operands in an expression - RM 4.5(5)
Assignment statement evaluation - RM 5.2(3).1, 5.2(4)
Order of evaluation of parameter associations - RM 6.4(6)
Order of parameter copy-back - RM 6.4(6)

Task activation order - RM 9.3(1)

Guard condition evaluation - RM 9.7.1(5)

Evaluation of delay expression or entry family index - RM 9.7.1(5)
Selective wait alternatives - RM 9.7.1(6)

Scheduling order of tasks - RM 9.8(5)

Order of abortion - RM 9.10(4)

Elaboration order of compilation units - RM 10.5(2)
Elaboration of generic instantiations - RM 12.3(17)

[[] +] [’] 1] ’ [} 1]] (]]] (]]]]]] ’ []]

5.2 Storage Issues

Guide(03): If memory space is limited, determine how specific the linker (binder) is when
selecting data and code for inclusion into the executable image. This often is different for
runtime support routines and application routines. Some implementations load the entire
package even if only one data object is referenced. Others select only what is referenced.

-18-

Transportability Guidelines tor Ada Real-Time Software

Guide(04): For array types which must have exact storage layout requirements, use a length
clause for the entire object and insure that the number of elements multiplied by the bits
specified (or required) for all possible values of the element type is exactly equal to the
number of bits specified in the length clause. If a record is specified as the element type, use
a record representation clause to completely specify the layout.

Example:

type COLOR_TYPE is (RED,BLUE,YELLOW,ORANGE);
for COLOR_TYPE'size use 2;

type COLOR_ARRAY_TYPE is array(1..5) of COLOR_T PE;
for COLOR_ARRAY_TYPE'’size use 10;

This forces the upper bound to be 10, and since S (five) 2-bit elements are required to store
the necessary information, the lower bound is also 10 bits. Note: pragma "PACK" is the
preferred approach to obtaining the desire.d bit density for arrays (see Guide 7 and
minimum requirements listed above).

Guide(05): If access types are used, verify that sufficient space is made available for each
accgts)s collection. This should be done using a length clause on the "STORAGE _SIZE"
attribute.

Guide(06): If tasking is used, verify that sufficient space is made available for task activation.
This should be done using a length clause on the "STORAGE_SIZE" attribute. Always
explicitly state the storage requirement for each task. This implies that all tasks are defined
as task types. It is best if all storage requirements are specified in terms of bytes muitiplied
by the quotient of the number of bits in a storage unit divided by eight. For example, if 100
bytes are required, specify: ‘

for T/STORAGE_SI2E use 100 * (System.STORAGE UNIT/8);

This provides a consistent approach to allocating storage as bytes. Confusion could
otherwise result when one implementation uses bytes as the storage unit, and another uses
words (two bytes).

Guide(07): If pragma "PACK" is used, verify that it is supported in the same way on the
original and new iarget implementations.

Guide(08): Dependence on the "STORAGE ERROR" exception is not advised. It is
unclear what resources are available to the application after such an error has been
detected. If its use is required, care must be taken to force deallocation of sufficient storage
as the first portion of the handler. This may be achieved though explicit
unchecked_deallocation requests, or by leaving the scope of a block to free up both heap
and stack space.

5.3 Performance Issuces
Guide(09): If pragma "SUPPRESS" is used, verity that it has an effect and that the

performance improves.

-19-

Transportability Guidelines for Ada Real-Time Software

Guide(10): Use of package "MACHINE CODE" should be strictly controlled and
delineated by configuration management.” ¢iood documentation and brevity of the
subprograms is extremely important.

Guide(11): If pragma "INLINE" is used, insure that the compiler generates a warning if the
desired effect is not achieved. The disassembled programs should be examined to verify the
quality of the inlined subprograms as well as general code generation quality.

Guide(12): Be aware that some implementations have substantial overhead associated with
the elaboration of block statements. Use them with some discretion.

Guide(13): Exception propagation overhead varies considerably among implementations. If
possible do not expect fast exception propagution. If this is required, then the specific
performance required must be documented in the Transporting Manual. Avoid the use of
user defined exceptions as flags. More consistent timing is achieved by the direct use of
variables for (boolean) flags, although the explicit checking of flags may consume more
execution time in the typical case. Exceptions should be used for truly exceptional
conditions (things that arc never expected to occur, but may because of hardware failures or
software design errors).

Guide(14): Do not use implementation-defincd exceptions. [}] There is no consistency
among different compilation systems.

Guide(15): Aggregate assignments both in el:boration and execution code vary widely
between implementations. Establish benchmarks appropriate for your application that
indicate major changes in time/space for these operations.

Guide(16): Are exceptions raised where respcnse to the exception must be handled in
real-time? Be aware that exception handling nverhead can very greatly as a function of
compiler and/or linker switches that support exception trace-back capability,

Guide(17): Measurements should be done on the execution time of every procedure as well
as each rendezvous. Best, worst, typical, and :uverage times should be recorded for each
item. These should be preserved and comparcd during the transporting effort. All tests
should be run with the compiler and linker options which will be used for both testing and
svstem delivery. Note that turning the optimizer on has frequently been observed to slow
down some portions of the code, and may even result in a net performance degradation. For
example, this can occur if temporaries are gener:ted to save index calculations which are not
refecrenced more than once.

5.4 Tasking Issues

suide(18): Selection of the scheduling algorithm is totally non- standard. Generally all
useful implementations sup;;ort as a default = "run 'till blocked (RTB)" scheduler that
supports at least 16 levels of priority. This implies that a task will run until it is suspended
waiting for 1/O, a rendezvous, a delay, or until preempted by a higher priority task. Many
implementations also support various flavors of time slicing, including a mixture of
time-sliced and RTB. 1t is advisable to keep the tasking requirements on the runtime as
simple as possible, since taking advantage of th: more complex features may unnecessarily
limit transportability if they are not absolutely required. Always explicitly state the priority
of each task, including the main procedure. U se a configuration file to define all of the

220-

Transportability Guidelines for Ada Real-Time Software

priority constants, which should be specified in terms of priority’last and predecessors of
each other.

-

Example:

with System; use System;
package Config is

-- Priorities of all tasks in order from highest priority to Lowest...
graphics_priority : constant PRIORITY :

operator_priority : constant PRIORITY :
rocket_priority : constant PRIORITY :

PRIORITY’ last;
PRIORITY'PRED(graphics_priority);
PRIORITY/PRED(cperator_priority);

Guide(19): Do not depend on task activation to occur at the hiéher priority of the activator
or the task being activated. This restriction muy change in Ada9x (the future revision of the
language).

Guide(20): It is advisable that each task have an "entry Synchronize" that is signaled as a
consequence of the main program execution. Each task would "accept Synchronize" as their
first statement. This allows much more user control over the “start up” of tasks declared in
the outermost level of a library package. Since these tasks are activated in order of
elaboration, they tend to start execution in an order defined by the compiler. In any case,
liberal use of pragma "ELABORATE" is suggested to insure the library-level tasks do not
call package procedures before their bodies are elaborated.

Guide(21): If the main program terminates via an exception handler, it should abort any
library-level tasks. This insures that the library tasks will terminate (assuming abort is
implemented asynchronously). Generally, a program with library-level tasks should only
provide initialization code in the main procedure.

Guide(22): Be aware that task abortion may or may not take place immediately. If it 1s
important that a particular implementation approach is depended upon, then this must be
clearly stated in the design. Tusks may continue to execute indefinitely even ufter being
aborted on certain implementations.

Guide(23): Only specify one tusk per abort statement. This forces an explicit order of
abortion.

Guide(24): Dependence on rendezvous optintizations is an unfortunate reality for real-time
programs. Obviously, limiting the rate at which rendezvous occur is a design goal to reduce
the dependence on compiler optimizations. The use of implementation defined pragmas to
indicate specific optimizations should be allowed when absolutely necessary. Often, similar
but not identical pragmas are supported by several implementations. An example of this is
the execution of an interrupt accept bodv directly without requiring a full task context
switch. This can significantly reduce both the latency and overhead associated with

2.

Transportability Guidelines for Ada Real-Time Software

processing high-rate interrupts. On the other hand, if the additional processing of a
conventional context switch can be tolerated, it is preferable to omit §pec12'|ng any
optimization. If optimization is required, insure that the restrictions indicated for the
pragma are observed. There is generally no checking performed by the compiler to insure
the code meets the restrictions, and erratic behavior generally results if they are violated.

Guide(25): Do not depend on "delay 0.0" to result in a scheduling event. That is, for a Run
till Blocked scheduler, many implementations will treat "delay 0.0" as a request to put the
current task on the end of the "ready” list, allowing other tasks to potentially execute.
However there is no assurance that this is done for all implementations, and some may
optimize very small delays into tight timing loops or clock polling loops. Unless this
dependence 1s clearly indicated, a "working” program muay cause task starvation in a new
runtime environment during heavy loading conditions.

Guide(26): Do not expect delay resolutions of less than Sms. Most implementations allow
configuration of the delay resolution, but at the expense of receiving and processing a timer
interrupt at the minimum interval. This will usually result in excessive overhead if the
required resolution is below a few milliseconds.

Guide(27): If more than one delay alternative is specified in a selective wait, do not depend
on which orie will be taken in cases where their values are (nearly) the same.

Guide(28): Use pragma "SHARED" for any scal:r variables accessed by more than one task.
If the pragma is not supported for that type, either change the program so the shared
variable is not necessary, or manually makc accesses to the variable atomically by
disabling/enabling interrupts. Be sure that no exception is possible during the period
interrupts are disabled. When accessing non-scaler types, make sure that rezds and writes
are performed as atomic actions by viewing the generated code.

5.5 Interrupt Processing Issues

Guide(29): Do not allow a task that contains int-rrupt entries to terminate prior to disabling
the interrupt source. Failure to do so may allow the interrupt to arrive and subsequently
execute the corresponding accept body after the task has terminated. This includes the use
of a terminate alternative within the interrupt handler task.

Guide(30): For tasks with interrupt entries, always reserve the highest software priorities for
these tasks. This will help to insure that the task can return to the accept statement without
being preempted by other software tasks. Note that iithough the accept body is executed at
the "interrupt priority", after the accept statement the priority resumes to the previous
software priority. This is true even if the only state:nent outside the accept statement is a
"loop ... end loop;". Many implementations optimi-e away this construct, yet this is not
guaranteed. The software priority should be as: igned according to the urgency in which the
next interrupt could arrive 1n relation to other irterru t tasks.

Guide(31): Generally it is not recommended to »erform an unconditional rendezvous within
an interrupt accept body. If the accept body is suspended during an interrupt, the state of
the hardware may preclude other interrupts froi 1 being serviced. %Aost implementations that
support interrupt entries also provide some canability to signal other "support” tasks from
within an interrupt task. Read the document.tion carefully since they may also require
certain restrictions. As always, use the simplest approach available that will meet your

0.

Transportability Guidelines tor Ada Real-Time Software

requirements. Use of a parameterless conditional entry call is recommended. If shared data
is modified by an interrupt task, the corresponding interrupt should be disabled while
accesses are made from other tasks.

5.6 Numeric Issues

Guide(32): Do not depend on "NUMERIC ERROR". Wherever "NUMERIC ERROR" is
expected, always use "CONSTRAINT ERROR | NUMERIC ERROR". The language
maintenance process has established ‘an approved language interpretation (#387) that
states:

“"Wherever the Standard requires that NUMERIC_ERROR be raised (other than by a raise statement),
CONSTRAINT_ERROR should be raised instead.

This interpretation is non-binding."
The fact that the interpretation is non-binding, means that it is implementation dependent.

Guide(33): Always make sure that each calculation can be performed within the range of the
base type of the operands. Some implementations may perform intermediate calculations
with a larger range than required by the Ada language standard, but small variations in the
runtime environment could change this (including an optimize phase). For example:

type SMALL_TYPE is range 1..100;
VAR1 : SMALL_TYPE := 4;
VAR2 : SMALL_TYPE := BO;

VART :x VARY * VAR2 / 10;

The above assignment may work for a while producing the correct result of 32, but after an
c-+imize phase or transporting, the intermediate result of 320 may cause an exception.
Lictine the base type to be lurge enough to support all calculations, then use subtypes for
object declarations. See RM 11.6(6)

Guide(34): Provide sufficient explicit checks to insure that overflow conditions do not occur.
Do not depend on the Ada implementation to detect an overflow condition. Besides the fact
that it may be necessary to suppress checks to obtain performance, some implementations
simply do not suppoit overflow detection.

Guide(35): Do not use equality comparisons for floating point types. Instead, subtract the
two operands and compare the difference to be less than some allowable value. This
difference should exceed the greater model interval of the types. See RM 4.5.7(10).

Guide(36): If errors are possible due to the rounding algorithm used when converting real
types to integer types, code must be included to provide explicit rounding. This may take the
form of a generic “Round” function thut is used whenever converting real types to an integer
type. If possible, avoid dependence on a particulur rounding convention. See RM 4.6(7).

19
vt
L]

Transportability Guidelines for Ada Real-Time Software

Guide(37): If errors are possible due to the rounding algorithm used for the real predefined
operators types, the type should be defined with additional digits of accuracy, or additional
code should be added to compensate for accumulated error. Note that the attribute
"MACHINE ROUNDS" is more helpful when it is "TRUE", because real operators may still
perform rounding in some cases when it is "FALSE",

Guide(38): Do not use the predefined numeric types. Define a package "Types" for the
atpplicution dependent standard types based strictly on the ranges and accuracies required
(tor example: "type ROAD LENGTH _TYPE is range 0..37000;"). Careful attention to
correctly specifying the required accuracy and range of numeric types is essential for
transportability. Implementations may compute different results, but are required to be
within the accuracy constraints imposed on the real types. This implies that if the real types
are defined properly, the application should operate correctly on all configurations which
can support those types. Implementations that cannot support the type are obliged to reject
the program during compilation. Note that the predefined tvpe "STRING" and many of the
1/O subprograms use the predefined "INTEGER" type. You will have to convert from the
application integer types to "INTEGER" if you use them.

Guide(39): Most implementations do not support fixed point type length clauses for T"Small
that are not a power of two. Inform the hardware designers of this limitation and request
that hardwidre values be supplied as a power of two. For example, temperatures should not
be in tenths of a degree (0.1) but rather in eighths (0.125) or sixteenths (0.0625). One
alternative is to read the values as integers, and then immediately convert them to an
appropriate fixed point type while applying the necessary scale factor. This will of course
reduce the accuracy of the values somewhat. The other alternative is to implement a scaled
integer arithmetic package, which is not easily done and can result in performance problems.

Guide(40): It must not be assumed that a static expression is evaluated with the same
accuracy than that of the model numbers of a particular real type. An implementation is not
required to produce the same value for a static expression by compile-time evaluation on a
host computer system as it would produce for the same expression at runtime on the target
computer system. These values are only required to be in the same model number interval.
The consequence of this potential imprecision makes the results of comparisons
implementation dependent.

5.7 Subprogram Issues

Guide(41): Since parameters of composite types may be passed by reference, multiple access
paths are a potential for these objects. Insure that every composite type passed as a
parameter is never passed more than once during the invocation of a subprogram (or accept
body) and is not accessed as a global variable within the subprogram or accept body. This is
especially true of recursive subprograms, since the behavior depends on whether or not the
object is copied or simply a reference is passed. Special care must be taken when writing
generic software for which the type is not known.

Guide(42): If return types from functions are unconstrained, verify that any storage created
for such objects is always deallocated after the function call.

Guide(43): Always assign a value to out mode parameters for procedures. See RM 6.2(3)

-24-

Transportability Guidelines fir Ada Real-Time Software

Guide(44): Most embedded systems do not exe ;ute commands which invoke Ada programs,
however it is possible that some control over pr)gram invocation may exist. For example, an
embedded system may have a general purpose network driver which can accept commands,
load an Ada program and execute it. If comm: nd line (invocation) parameters are used for
the main program, application access to themr should be strictly hidden by an application
defined subprogram.

Guide(45): Functions should not have side-e fects. This eliminates the vast majority of
situations where order dependencies occur If they are necessary, they should be
documented to clearly indicate all possible sid: -effects. Such a function should not be used
in a statement with any of the objects it modific s, or with any other function (including itself)
which modifies the same objects. If they must be in the same statement, insure that if any
valid order is chosen, the results will be corre :t with respect to the accuracy requirements
and that the execution timing is essentially tt 2 same. Note that even though all possible
results may appear to be "sufficiently correct”, it is still better to eliminate the order
dependency. The slight difference in results may effect the flow of the program, and
therefore result in latent design errors becomin active. ‘

5.8 Input/Output Issues

Guide(46): Assume as little as possible about the I/O support available. [3] If file storage is
required in the application, Ada source code for the file system should be available and
should be based on common (i.e. 512-byte) block oriented access schemes that are usually
supported directly by the hardware. Most bare targets have little if any I/O support,
especially for file oriented 1/0.

Guide(47): If temporary files are created, use an application program to generate a unique
name rather than using a null string as the file name. Always explicitly delete these files
prior to termination. If this is impractical and standard temporary files must be used (i.e.
null string names), insure that the system automatically deletes them. If not, provide some
method to achieve the same effect. The status of a temporary file is unknown after it is
closed. That is, some implementations may delete it immediately. Use the "Reset”
procedure to access information in temporary files. The "Name" function should not be used
to obtain the name of a temporary file since 1t may raise "USE_ERROR?".

Guide(48): Requiring interchange of any files between two runtime environments has a high
probability of making a program non- transportable. This is because the 1/O packages
instantiated for types may have different representations as they are stored in the file. The
problem generally occurs when a database is maintained by a program. Note that the
runtime environment change could be caused by any recompilation of the program. Since
the compiler is free to choose the default representations of data objects, a new optimize
phase may result in a different representation for a type. This would cause the program to
misinterpret the data written out by a previous execution of the same program. What is
even more likely is the simultaneous sharing of a database by different releases of the same
program or even different hardware environments. This is typical of a factory automation
situation where data fogging and manufacturing parameters are maintained over a period of
time by a central data base and updated and rcferenced hy several work stations connected
by a network. If file interchange is requircd between the original gmgram and the
transported proFram, it is suggested that a standard file format be specified and
representation clauses used to help achieve the standard format. Another approach is to
write all data in a standard ASCII text format, although the overhead associated with this

23

Transportability Guidelines for Ada Real-Time Software

approach is usually too great for a real-time prouram, It this approach is used, avoid use of
‘the "END_OF LINE", "PAGE", and "END OF FILE" delimiters. Instead, substitute with
application defined representations for these terinators. Finally, it may also be possible to
provide conversion programs that provide one-time or on-demand translation of a shared
data base to the required format.

Guide(49): Be especially cautious of performing I/O on access types or unconstrained types.
Access types will typically not be of value from one program execution to the next, since they
are frequently memory addresses which are no longer meaningful after the program has
terminated. Unconstrained types must provide constraint information in addition to the
data when transferring between files and memorv. The format of this constraint information
is not standard among implementations and there is no way for an application program to
specify a particular format. See RM 14.1(1) and [4.1(7).

Guide(50): Concurrent sharing of external files ‘s extremely implementation dependent. If
possible, design the program so this is not nece.sary. If sharing is required, document the
requirement and provide details as to how the fi‘e(s) are shared. This includes a single task
opening the same external file twice, more than one task opening the same external file, or
more than one program opening the same external file. The same holds true for deleting
shared files. See RM 14.1(13). It is recommended that a "monitor” task (or program) be
used to provide access to shared files.

Guide(S1): If possible, use file names that begin with an alpha character and contain only
alphanumeric characters. Ideally, file names :hould be kept to eight characters unless
confusion can occur as to the purpose of the tile. Avoid use of the "FORM" parameter
except when absolutely necessary.

Guide(52): Do not depend on the raising of "DATA_ERROR" while reading files.
Implementations are allowed to omit checks fcr data correctness. See RM 14.2.2(4) and
14.2.4(4).

Guide(53): Always close files prior to program tc ‘mination. See RM 14.1(7).

Guide(54): Do not depend on a specific representation for "LINE", "PAGE", and "FILE"
terminators,

Guide(§5): For interactive devices and "GET L NE", be aware that some implementations
wait for additional characters to be entered afte the line terminator to check for a page or
file tcrminator. Verify the operation of the target runtime system to ascertain its
characteristics. This additional wait is considered an undesirable approach to text input and
the vendor should be advised of the problem. Note that this is separate from waiting when
an explicit call to "End_Of File" or "End_Of Page" is made. Implementations have little
choice but to wait until some input is available Tor these functions.

Guide(56): Many systems buffer input and ou'put. This may effect the timing and the
presentation order of data (especially when two tasks share a console). Devices shared by
tasks should have their access serialized by providing a task as an interface to the device.
Any buffering mechanism that is required tor proper program execution must be
documented.

5.9 Other Issues

Transportability Guidelines for Ada Real-Time Software

Guide(57): Avoid use of implementation defined attributes, types, and exceptions. For
example, if a 16-bit "WORD" type is defined in package "System"”, define an identical type in
the application’s "Types" package to use-in its place. Using implementation dependent
aspects of package "System" is a very common mistake which causes serious transportability
problems. It can even cause difficulty with the use of Ada-PDL processors, since they may
not allow redefinition of package "System".

Guide(38): Use only ISO seven-bit coded characters. Some implementations allow the 8-bit
character set within comment fields, but this is not accepted by all implementations.
Alternatively, provide a preprocessor that removes these characters or substitutes some
corresponding string prior to compilation.

Guide(59): Restrict representation clauses for enumeration literals to unsigned integers.

Guide(60): Always initialize a variable prior to referencing it. This is simply good
programming practice. Be careful to realize that passing a variable as an in or in out
parameter is equivalent to referencing, even if the variable will not be referenced prior to
assignment in tue subprogram. This practice does not imply that all variables must be
provided with an initial value (at the time of declaration) however.

Guide(61): Document the bit ordering used for all record representation clauses. These are
not standard and are likely to have an impact during transporting a program. It may be
desirable to develop a source code translator that will translate tfrom one bit ordering to
another, provided component clauses are defined in a uniform way. Most microprocessor
hardware conventions refer to bit zero (0) as the least significant bit. Therefore it is helpful
to document the application requirements in terms of least significant and most significant
bits rather than using terms such as "left” or “richt” which are meaningliess in this context.

Guide(62): Do not reference generated names for implementation dependent record
components. See RM 13.4(8).

Guide(63): Whenever pructical, isolate implementation dependencies within separate
compilation units. This modularization helps to identify dependencies and facilitates
modifications to them. Use the package fucility to encapsulate these implementation
dependencies. {11] This is the preferred technique for isolating implementation
dependencies when you must use them.

Guide(64): Provide fully expanded names for all objects not defined in the immediate
compilation unit. This does not include references to functions defined by operators or
objects declared by the Ada language standurd. Be careful to expand names of objects
declared in package "System”, but not explicitly identified in the Ada language standard.
Also, references to objects that are declared in ancestor units (parents of subunits) which are
immediately visible should still be fully expanded. This will not directly effect
transportability but is often essentiul 10 program comprehension and maintenance.
Therefore it also is beneficial to transporting programs that require some modification.

Guide(65): Avoid use of lunguages other than Ada. Mixing language creates at least two
problems: the transportability of the other language(s), and transportability of the
conventions and intertaces between Ada and the other language(s).

Transportability Guidelines for Ada Real-Time Software

Guide(66): "Unchecked Conversion" should only be used for statically constrained types of
the same size. If sizes are different, create a rccord type with the same size of the larger
type, and Erovide explicit values for the additional fields when converting between the large
type and the created record type.

For example:

type LONG_CONVERT_TYPE is

record
LOW_WORD : Types.WORD; -- 16 bits each
HIGH_WORD : Types.WORD;

end record;

for LONG_CONVERT_TYPE use
record
LOW_WORD at O range 0..15;
HIGH_WORD at 0 range 16..31;
end record:
for LONG_CONVERT_TYPE’size use 32;

function Word_To_Long is new

Unchecked_Conversion(LONG_CONVERT_TYPE,Types.LONG_WORD) -- same size
WORD_DATA : Types.WORD; -- 16 bit:

LONG _DATA : Types.LONG_WORD; -- 32 bit:

LONG _DATA := Word_To_Long((WORD _DATA,0)); -- always z:ro fill high word!

- (no sign extension)

Guide(67): Do not reference "System.MEMOR Y_SIZE". This has no consistent definition
among im;)lememations. What might be more 1 seful is to define functions which return the
amount ot storage currently available for alloc ators (heap) or for subprogram invocation
(stack). This might be helpful in allowing prog: ims to take advantage of available memory
for allocating more objects or deeper nesting »f recursive subprograms. These functions
would most %ikcly require modification of the 1 intime to implement however. This leaves
embedded systems no transportable way to resp« nd to the amount of memory available.

Guide(68): Modifications to the vendor supplied runtime must be clearly documented and
categorized as application related or target processor related. It is generally preferred to
make any modifications in the form of subprograms that are called by the vendor runtime
rather than making changes directly to the runt:me code. This of course is only practical if
the runtime is sufficiently modular.

Guide(69): Add a ficld in the documentation template for each package, procedure,
function, and task indicating if any non-transportable features are present. In addition, for
each non-transportable feature employed, provide a detailed description of the expectations
for that feature. If possible, this comment should be extractable by a tool for placement in
the Transporting Manual.

Transportability Guidelines for Ada Real-Time Software

6. Summary

The ability to transport programs among different processor technologies is essential in the
maintenance of embeddedg systems. ’%‘he benefit of being able to upgrade processor
hardware and/or compiler technology over the lifetime of embedded systems is substantial.
Not only can processing throu hputgﬁe improved, which is often necessary to add software
capability, but it can reduce t%te difficulty in obtaining parts for obsolete technology. By
extending the useful life of these systems, cost savings can be achieved while modernization
makes the System meet new requirements ('hreats) much more quickly. Furthermore,
transportability of embedded software is «ften required for the reuse of software
components which can be shared among simila embedded application areas.

This handbook provides guidelines to improve the transportability of real-time embedded
applications software. Although it is not practical to achieve 100% transportability, it is
reasonable to obtain sufficient processor independence so that transporting to higher
performance targets is cost effective. This ability is essential if target processor selection is
deferred until system integration time.

Although implementation dependencies ar¢ generaily to be avoided, when specific
characteristics are required of the compilation system it is preferred to explicitly state them
in the source code. They typically take the form of representation clauses wgich force a
particular representation rather than dependin: on the compilation system’s default. In this
way, other compilation systems can either comnply with the request or reject the program.
Thbisl reduces the likelihood that the transporied program will execute incorrectly in very
subtle ways.

4.

Transportability Guidelines for Ada Real-Time Softwane

" 7. References N

o
AV

[1] Reference Manual for the Ada Programming Language. ANSI/MIL-STD-1815A-1983,
American National Standards Institute, Inc., 1983.

[2] Nissan, Wallis, Wichmann and others, "Ada-Europe Guidelines for the Portabilit
of Ada Programs”, Ada Letters, ACM SIGAda, Volume I, Number 3, March, April 1922,

[3] F. Pappas, Ada Portability Guidelines, SofTech Inc., Waltham, MA, March 1985,
DTIC/NTIS #AD-A160 390.

[4] J. Goodenough, and others, Ada Reusability Guidelines, Sof Tech Inc., Waltham, MA,
April 1985, DTIC/NTIS #AD-Al61 456.

[S] E. R. Matthews, "Observations on the Portability of Ada 1/0", ACM Ada Letters VII(S).
pp. 100-103 (September, October 1987).

[6] Peter Freeman, Tutorial: Software Reusability, Computer Society Press, 1987.

[7] "Ada Compiler Validation Procedures and Guidelines", Ada Joint Program Office,
Ada Letters, ACM SIGAda, Volume VI, Number 2, March, April 1987.

(8] "A Framework for Describing Ada Runtime I.nvironments”, Ada Runtime Environment
Working Group of SIGAda, October 15, 1987.

[9] "Catalogue of Ada Runtime Implementation Jependencies’, CECOM, Center for Software
Engineering, CIN: C02092JB0001. 15 February 1989, and ACM SIGAda Ada Runtime Environment
Working Group, December 1, 1987, version 2.0.

[10] J. Ichhiah, et al, Rationale for the Design of the Ada Programming Language,
ACM SIGPLAN Noticex, 14(6), Part B (June 197),

[11] "Ada Style Guide", Software Productivity Ci asortium, Reston, VA, SPC-TR-88-003,
Version 1.0, February 1988.

-30-

Transportability Guidelines for Ada Real-Time Software

8. Glossary

ARTEWG: The Ada RunTime Environment Working Group, is a grou? sponsored by the
Association for Computing Machinery (ACM), Special Interest Group for Ada (SIGAda),
whose purpose is to address the problems encountered in runtime environments.

PIWG: The Performance Issues Working Group, is a group sponsored by the Association
for Computing Machinery (ACM), Special Interest Group for Ada (SIGAda), whose
purpose is to write benchmark programs which can be executed on different Ade
compilation systems and provide performance information.

Target Architecture: The computer architecture used for execution of object code generated
by an Ada compiler. [7]

-31-

Transportability Guidelines for Ada Real-Time Software

9. Appendix A - Implementation Tests)

The tests in this appendix will need to be customized to compile on each prospective target.
This is because they are constructed almost entirely of implementation dependencies for the
purposes of determining which ones are supported by an implementation. In many cases,
the only output from a test will be compiler diagnostics indicating that a feature is not
supported. In these cases, the user can usually comment the offending statement, or make
small maodifications to allow the program to compile.

Thesc tests may be used to help determine the implementation approach used by both the
initial target and the new retargeted environment. This information is useful to isolate
problems that are not otherwise obvious. The results of the tests should be documented in
the Transporting Manual. If problems occur during the transporting effort, the differences
in implementation approaches identified by the tests can provide a good starting point for
determining the cause of the problem.

AR LA R R A e A R e e e e e R I 2 L R R R R R R R L R R L R L
-+ TST_LEN_PACK - This procedure tests the implementation of
-- the SIZE representation clause and the pragma PACK for simple
-- types and arrays.
-- The tests use the following simple types:
-- A BOOLEAN set to 8 bits, a BOOLEAN set to 1 bit, an unsized
.- 4-bit INTEGER, a 4-bit INTEGER set to 4 bits, an unsized
3-bit INTEGER, and a 3-bit INTEGER set to 3 bits,
.- Thrce arrays are dectared for each simple type, one that is
-- is not packed, onc that is packed, and one that is unpacked
but sized to the miniral possible size.
-- The size (from tho SIZE attribute) is printed for all 24 array
.- types.
-- Two questions concerning fixed point types are also given as
- declarations. Can the size of a fixed point type be set to
half the size of the size of the implementation’s INTEGER type?
-- Caon 'SMALL for a fixed point type be set to a non-power of twe?

-- Author: R.W. Sebesta

-- pDate: August, 1988

with TEXT_10;

use TEXT_10;

procedure TST_LEN_PACK is
package INT_10 is new INTEGER_IOCINTEGER);
use INT_10;
type SMALL_BOOL_TYPE is new BOOLEAN;
for SMALL_BOOL_TYPE’'SIZE use 8;
type TINY_BOOL_TYPE is new BOOLEAN;
for TINY_BOOL_TYPE'SIZE use 1;
type SMALL_INT_1_TYPE is range 0..15;
for SMALL_INT_1_TYPE'SIZE use &;
type SMALL_INT_2_TYPE is range 0..15;
type TINY_INT_1_TYPE is range 0..7;

Transportability Guidelines for Ada Real-Time Software

for TINY_INT_1_TYPE‘SIZE use 3;

type

type
type
type
type
type
type

type
type
type

TINY_INT_2 TYPE is range 0..7;

ARRAY_BOOL _1_TYPE is array (1..100) of SMALL_BOOL TYPE;
ARRAY_BOOL_2_TYPE is array (1..100) of TINY_BOOL_[YPE;
ARRAY_SMALL_INT_1_TYPE is array (1..100) of SMALL _INT_1_TYPE;
ARRAY_SMALL_INT_2_TYPE is array (1..100) of SMALL INT_2_TYPE;
ARRAY_TINY_INT_31_TYPE is array (1..100) of TINY_INT_1_YYPE;

ARRAY_TINY_INT_2_TYPE is array (1..100) of TIKY_INT_2_TYPE;

ARRAY_BOOL_1_TYPE P is array (1..100) of SMALL_BC)L_TYPE;
ARRAY_BOOL_2_TYPE_P is array (1..100) of TINY_BOC. TYPE;
ARRAY_SMALL_INT_1_TYPE P is array (1..100) of SMA_L_INT_1_TYPE;

type
type
type

ARRAY_SMALL_INT_2_TYPE_P is array (1..100) of SMALL_INT_2_TYPE;
ARRAY TINY_INT_1_TYPE_P is array (1..100) of TINY_INT_1_TYPE;
ARRAY_TINY_INT_2_TYPE_P is array (1..100) of TINY_INT_2_TYPE;

pragma PACK
pragma PACK
pragma PACK
pragma PACK
pragma PACK
pragma PACK

(ARRAY_BOOL_1_TYPE_P);
(ARRAY_BOOL_2_TYPE_P);
(ARRAY_SMALL_INT_1_TYPE_P);
C(ARRAY_SMALL_INT_2_TYPE_P);
(ARRAY_TINY_INT_1_TYPE P);
(ARRAY_TINY_INT_2_TYPE_P);

type ARRAY_BOOL_1_TYPE_S is array (1..100) of SMALL_6{0L_TYPE;
type ARRAY_BOOL_2_ TYPE_S is array (1..100) of TINY_BOUL TYPE;
type ARRAY_SMALL_INT_1_TYPE_S is array (1..100) of SMALL_INT_1_TYPE;
type ARRAY_SMALL INT_2_TYPE_S is array (1..100) of SMALL_INT_2_TYPE;
type ARRAY_TINY_INT_1_TYPE_S is array (1..100) of TINY_INT_1_TYPE;
type ARRAY_TINY INT_2_TYPE_S is array (1..100) of TINY_INT_2_TYPE;
for ARRAY_BOOL_1_TYPE_S’'SIZE use 100;
for ARRAY_BCOL_2_TYPE_S'SIZE use 100;

for ARRAY_SMALL_INT_1_TYPE_S'SiZE use 400;

for ARRAY_SMALL_INT_2 TYPE_S’'SIZE use 400;

for ARRAY_TINY_INT_'_TYPE_S'SIZE use 300;

fcr ARRAY_TINY_INT_2_TYPE_S'SI2E use 300;

type FIXED_TYPE is delta 0.125 range -5.0..5.0;
for FIXED_TYPE’SI2E use INTEGER’'SIZE / 2;
for FIXED_TYPE’SMALL use 0.01;

begin

PUT ("Size of an unpacked array of 100 8-bit BOOLEAN ¢.cments is:");

PUT (ARRAY_BOOL 1_TYPE'SIZE); NEW_LINE;

PUT ("Size of an unpacked array of 100 single-bit BOOLLAN clemonts is:™);
PUT (ARRAY_BOOL_2_TYPE'SIZE); NEW_LINE;

PUT ("Size of an unpacked array of 100 4-bii si1zed INTECER elements is:™);
PUT (ARRAY_SMALL_INT_1_TYPE'SIZE); Ntw_LINF;

PUT (“Size of an unpacked array of 100 &4-bit unsized INTEGER clements 1s:%);
PUT (ARRAY_SMALL_INT_2 TYPE'SIZL); NLW_LINE;

PUT ("Size of an unpacked array of 10U 3 bit si1zcd INTEGER eloments is:™);

PUT (BRRAY_

PUT (“"Size

PUT (ARRAY

NEW_LINE;

PUT ("Size

PUT (ARRAY_

PUT ("Size

PUT (ARRAY_

PUT ("Size

PUT (ARRAY_

PUT ("Size

PUT (ARRAY_

PUT ("Size

PUT (ARRAY_

PUT ("Size

FUT (ARRAY_

NEW_L INE;

PUT ("Size

PUT (ARRAY:BOOL_1_TYPE_S'SIZE); NEW_LINE;

PUT ("Size

PUT (ARRAY_

Transportability Guidelines for Ada Real-Time Software

TINY_INT_1_TYPE'SI2E); NEW_LINE;
of an unpacked array of 100 3-bit unsized INTEGER elements is:™);
TINY_INT_2_TYPE'SIZE); NEW_LINE; ~

of a packed array of 100 8-bit BOOLEAN elements is:");
BOOL_1_TYPE_P’SIZE); NEW_LINE;

of a packed array of 100 single-bit BOOLEAN elements is:");
BOOL_2_TYPE_P'SI2E); NEW_LINE;

of a packed array of 100 4-bit sized INTEGER elements 1s:');
SMALL_INT_1_TYPE_P'SIZE); NEW_LINE;

of a packed array of 100 &4-bit unsized INTEGER elements is:™);
SMALL_INT_2_TYPE_P'SIZE); NEW_LINE;

of a packed array of 100 3-bit sized INTEGER elements i<:");
TINY_INT_1_TYPE_P'SIZE); NEW_LINE;

of a packed array of 100 3-bit unsized INTEGER elements is:');
TINY_INT_2_TYPE P'SIZE); NEW_LINE;

of a sized unpacked array of 100 8-bit BOOLEAN elements is:");

of a sized unpacked array of 100 single-bit BCOLEAN clements is:™);
ROOL_2 TYPE_S'SI2E); NEW_LINE;

PUT ("Size of a sized urpacknd array of 100 4-bit sizced INTEGER elements is:');
PUT (ARRAY_SMALL_INT_1_TYPE_S'SIZE); NEW_LINE;
PUT ("Size of a sized urpacked array of 100 &4-bit unsized INTEGER elements is:%);
PUT (ARRAY_SMALL_INT 2 TYPE_S'SIZE); NEW_LINE;
PUT ("Size of a sized unpacked array of 100 3-bit sizcd INTEGER elements is:™);
PUT CARRAY_TINY_INJ 1_TYFE_S'SIZE); NEW_LINE;
PUT (“Size of a sized unpacked array of 100 3-bit unsized INTEGER elements is:");
PUT (ARRAY_TINY_INT 2 TYFE_S'SIZE); NEW_LINE;

end TST_LEN_PACK;

Transportability Guidelines for Ada Real-Time Software

PRI TE LRI TR L LR L I L S 2 PR L S L S 2 2 L2 2 2 2 TS 2 2l S22 24 22 2122 2 22 2Ll d
-- TST_COLL - This procedure tests the STORAGE SIZE~

-- representation clause for collections for access typ-s.

-- Three access types are defined, ~ne with a STORAGE_SIZE

-- specified. The type that is tested last is to used to

-- determine whether there is any interference among collections.

-- Author: R.W. Sebesta
-- Date: July, 1988

with TEXT_I0;
use TEXT_I0;
procedure TST_COLL is
type BIG_INT is range 0..1000000;
package BIG_INT_IO is new INTEGER_IO(BIG_INT);
use BIG_INT_IO;
type INT_16 is range -32768..32767;
for INT_16'SI12E use 16;
type INT_1_PTR_TYPE is access INT_16;
type INT_2_PTR_TYPE is access INT_16;
for INT_2 PTR_TYPE'STORAGE_SIZE use 10000;
type INT_3_PTR_TYPE is access I[NT_16;

PTR_I : INT_1_PTR_TYPE;
PIR_2 : INT_2_PTR_TYPE;
PTIR_3 : INT_3_PTR_TYPE;
NUM_CBUECTS : BIG_INT;
begin
DEF_SIZE_:
begin

PUT (“The default s1ze for an INT_16 collection is:");
PUT (INT_1_PTR_TYPE'STORAGE_SIZE); NEW_LINE;
NUM_OBJECTS := O;
for COUNT in 1..1000000 loop
PTR_1 := new INT_16;
NUM_OBJECTS := NUM_OBJUECTS + 1;
end Loop;
exception
when STORAGE_ERROR =>
PUT ("Maximum number of INT_16 objects with default STORAGE_SIZE 1s:");
PUT (NUM_OBJECTS); NEW_LINE;
end DEF_SI2E_1;

SET_SI2E:
begin
PUT ("Size of a collection for INT_16 objects that is sct to 10000 is:™);
PUT (INT_2_PTR_TYPE'STORAGE_SIZE); NEW_LINE;
NUM_0BJECTS := 0;
for COUNT in 1..1000000 loop

Transportability Guidelines for Ada Real-Time Software

PIR_2 := new INT_16;
NiM_OBJECTS := NUM_OBJLLTS + 1;
end loop;
exception
when STORAGE _ERROR =>
PUT ("Maximum number of INT_16 objects with STORAGH_SI2E = 10000 is:");
PUT (NUM_OBJECTS); NEW_LINE;
end SET_SIZE;

DEF_SIZE_2:
begin
PUT ("Default size of a collection for INT_16 after all storage is used is:");
PUT (INT_3_PTR_TYPE'STORAGE_SIZE); NEW_LINE;
NUM_OBJECTS := 0;
for COUNT in 1..1000020 loop
PTR_1 := new INT_16;
Ni'M OBJFCTS := NUM_OBJECTS + 1;
end loop;
exception
when STORAGE _ERRQOR =>
PUT ("Maximam number of INT_16 objects with default STORAGE-SIZE is:");
PUT (NUM_OBJECTS); NEW_LINE;
end DEF_S12€_2;
end TST_COLL;

-36-

Transportability Guidelines for Ada Real-Time

NUM INTS: [NTFGFR := O;
brgin
accept TST_HEAFP _FNT do
for COUNT in 1..1000000 lrop
INT_PTR := new INT_16;
NUM_INTS := NUM_INTS + 1;
end loop;
end TST_HEAP FNT;
exception
when STORAGE _ERRCR =>
PUT ("Number of INT_16 objects allocated before STORAGE_ERROR:");
PUT (NUM_INTS); NEW_LINE;
end TST_HEAP_TYPE_1;

task body TST_STK_TYPE_1 is
NUM_PROCS : INTEGER := 0;
procedure TAKE_SFACE is
type LIST_TYPF is array (1..100) of IKT_16;

L1sT : LIST_TYPE;
begin

NUM_PROES 1= NUM_PROCS + 1;
TAKE_SPACE;

exception

when STORAGE _ERROR =>
PUT ("Frocedure TAKE_SPACE ran out of space after");
PUT (NUM_PRCCS); PUT (" calls (100 INT_16s each)");
2nd TAKE_SPACE;

NEW_LINE;

begin
accept TST_STK_ENT do
TAKE _SPACE;
end TST_STK_ENT;
end TST_STK_TYPE_?;

begin

PUT_LINE (“Test run of the TST_STK_2 task (STORAGE_SIZE = 20000)");
PUT ("Initial task STORAGE_SIZE is:");

PUT (TST_STK_2'STORAGE_SIZE); NEW_LINE;

TST_STK_2.TST_STK_ENT;

PUT_LINE ("Test run of the TST_STK_1 task (without rep clause)");
PUT (“Initial task STORAGE_SIZE is:");

PUT (TST_STK_1'STORAGE_SI2E); NEW_LINE;

TST_STK_1.7ST_STK_ENT;

PUT_LINE ("Test run of .he TST_HEAP_2 task (STORAGE_SIZf = 20000)");
PUT ("Initial task STORAGE_SIZE is:");

PUT (TST_HEAP_2'STORAGE_S12€); NEW_LINE;

TST_MEAP_2.TST_HEAP_ENT;

Softwire

Transportability Guidelines for Ada Real-Time Software

PR YT TR R AR P A2 L P TR R Y L 2 I A T IR S L S AL A e R AL e Ll e i il ddd
-- TST_TSK_STOR - This procedure tests the use of the STORAGE_SIZE

-+ representation clause and the STORAGE_SIZE attribute for tasks.

-- Four tests are attempted. [f any of them uses all available

-- storage, the subsequent tests are obviously not made. In these

-- cases, the order of the tests can essily be changed--the four

-- are instigated by code sequences at the end of the procedure

== TST_TSK_STOR.

-- The four tests are:

-- 1. Set STORAGE_SIZE for a task to 20000 and cause it to allocate
-- stack space until the STORAGE_ERROR is raised.

-- 2. Same as i, except without STORAGE_SI2E set.

-- 3. Set STORAGE_SI2E for a task to 20000 and cause it to allocate
-- heap space until the STORAGE_ERROR is raised.

-- 4. Same as 3, except without STORAGE_SIZ2E set.

-- Author: R.W. Sebesta
-- Date: August, 1988

with TEXT_10;

use TEXT_IO;

procedure TST_TSK_STOR is
package INT_lO is new INTEGER_IO(INTEGER);
use INT_10;

task type TST_HEAP_TYPE_ 1V is
entry TST_HEAP_ENT;
end TST_HEAP_TYPE_1;

task type TST_STK_TYPE_1 is
entry TST_STK_ENT;
ena TST_STK_TYPE_1;

type TST_HEAP_TYPE_2 is new TST_HEAP_TYPE_1;
for TST_HEAP_TYPE_2'STORAGE_SIZ2E use 20000;

type TST_STK_TYPE_2 is new TST_STK_TYPE_1;
for TST_STK_TYPE_2/STORAGE_SIZE use 20000;

type INT_16 is range -32768..32767;
for INT_16'SIZ2E use 16;

TST_WEAP_1 : TST_HEAP_TYPE_1;
TST_HEAP_2 : TST_WEAP_TYPE_2;
1ST_STK_1 : TST_STK_TYPE_Y;
1ST_STK_2 : TST_STK_TYPE_2;

task budy T5T_HEAP_TYPE_1 is

type INT_PTR_TYPE is access INT_16;
INT_PTR : INT_PTR_TYPE;

.37.

Transportability Guidelines for Ada Real-Time Software

PUT_LINE (“Test run of the TST_HEAP_1 task (without rep clause)");
PUT (“Initial task STORAGE_S12E is:™);

PUT (TST_HEAP_1'STORAGE_SIZE); NEW_LINE;
TST_HEAP_1.TST_HEAP_ENT;

end TST_TSK_STOR;

-

-30.

Transportability Guidelines for Ada Real-Time Software

PR A X R R X 0000'6000066‘000000040‘000000‘0‘0000000004-000§tQOO#OOO&O##bQOQOO
- TST_CNUM_TIME - This procedure determincs the relative cost of
-- using representation clauses to force nonconsecutive values to
-- be used for enumeration types. CALENDAR.CLOCK is used to time

-- &8 loop containing numerous references to arrays using an

-- enumeration types as their index types. Also included in the
-- loop are uses of the attributes PRED and SUCC. The loop, which
-- has 100000 repetitions, is repeated 10 times and the average

-- time is output, The 2verage of 10 repetitions is used to

-- avoid some of the inaccuracies of using CLOCK on a variety of
-- systems.

-- Author: R.W. Sebesta
-- Date: August, 1988
with CALENDAR;
use CALENDAR;
with TEXT_10;
~e TEXT_IO; ,
procedure tst_crum_time is
package FLT_IO is new FLOAT_IO (FLOAT);
use FLT_I0;
type ENUM_TYPE is (SUN, MON, TUE, WED, THU, FRI, SAT);
for ENUM_TYPE use (SUN => -300, MON => -200, TUE => -100,
WED => 0, THWU => 100, FR) => 200, SAT => 300);
type LIST_TYPE 1s array (ENUM_TYPE) of INTEGER;

LIST 1 : LIST_TYPE;
LIST 2 : LIST_TYPE;
TIME 1 : TIME;
TIME_2 : TIME;
TIME_USED : DURATION;

TOTAL_TIME . FLOAT;

TIME_USED_FLT : FLOAT;

AVG_TIME : FLOAT;

begin

TIME_1 := CLOCK;

LIST_1(SUN) := 2;

for INDEX in MON., SAT (oop
LIST_TCINDEX) := LIST_1(ENUM_TYPE'PRED(INDEX)) + 1;
end loop;

TOTAL_TIME := 0.0;

for 81G_COUNT in 1..10 loop
TIME_1 := CLOCK;
for COUNT in 1..100000 loop
for INDEX in SUN..SAT loop
LIST_2CINDEX) := LIST_V(INDEX);
end loop;
for INDEX in SUN..SAT loop

Transportability Guidelines for Ada Real-Time Software

LIST_1(INDEX) := LIST_2(INDEX);
end loop;
for INDEX in MON..FRI loop

-

LIST_1(ENUM_TYPE’SUCCCINDEX)) := LIST_2(ENUM_TYPE'PRED(INDEX)) - 1;

LIST_1(ENUM_TYPE'PRED(INDEX))
end loop;
end loop;
TIME_2 := CLOCK;
TIME_USED := TIME_2 - TIME_1;
TIME_USED_FLT := FLOAT(TIME_USED);
TOTAL_TIME := TIME_USED_FLT + TOTAL_TIME;
PUT (“Time used is:");
PUT (TIME_USED_FLT);
end loop;

NEW_LINE;

PUT ("Total time for 10 iterations:");
PUT (TOTAL_TIME); NEW_LINE;

AVG_TIME := TOTAL_TIME / 10.0;

PUT (“Average time per iteration:");
PUT (AVG_TIME); NEW_LINE;

v

end TST_ENUM_TIME;

LIST_2(ENUM_TYPE’SUCC(INDEX)) + 1;

Transportability Guidelines for Ada Real-Time Software

R R A A R R R R R RIS S P R R Y Y R) 000‘0000:0000‘000"0000*0“0000
-- TST_STATIC_REC_ALIGN - This procedure tests an Ada implcmentation's
-- ability to provide for record atignment for static records. The

-+ static records are defined in the separate package STATIC_REC_DATA.
-+ The four importcd record objects, REC_1, REC_2, REC_3, and REC_4

-- are specified to have alignments of 2, 3, 4, and 8,

-~ Author: R.W. Sebesta
-+ Date: July, 1988

with SYSTEM;
with UNCHECKED_CONVERSION;
with TEXT_10;
use TEXT_10;
with STATIC_REC_DATA;
use STATIC_REC_DATA;
procedure TST_STATIC_REC_ALICN is
package INT_IO is new INTEGER_IOCINTEGER);
use INT_lO;,
function CVT_ADDRESS_TO_INTEGER is new UNCHECKED_CONVERSION
(SOURCE => SYSTEM.ADDRESS, TARGET => INTEGER);
begin
-- Test for mnd 2 alignment
if CVI_ADDRESS_TO_INTEGER (REC_1’ADDRESS) mod 2 = O
then PUT_LINE ("Mod 2 alignment is OK");
else PUT_LINE ("Mod 2 alignment is incorrect™);
end if;
-- Test for mod 3 alignment
-- if CVT_ADDRESS_TO_INTEGER (REC_2’ADDRESS) mod 3 = 0
-- then PUT_LINE (""Mod 3 alignment is OK");
-- else PUT_LINE ("Mod 3 alignment is incorrect");
.- end if;
<- Test for mod & alignment
if CVI_ADDRESS_TO_INTEGER (REC_3‘ADDRESS) mod 4 = 0
then PUT_LINE ("Mod 4 alignment is OK");
else PUT_LINE ("Mod & aligrment is incorrect");
end if;
-- Test for mod 8 alignment
if CVT_ADDRESS_TO_INTEGER (REC_4'ADDRESS) mod 8 = 0
then PUT_LINE (“Mod 8 alignment is OK");
else PUT_LINE ("Mod 8 alignment is incorrect");
end if;

Transportability Guidelines fur Ada Real-Time Software

end TST_STATIC_REC_ALIGN;

Transportability Guidelines for Ada Real-Time Software

IR LA E N R RS RS A XA A A T2 2 A 2 A R R R 2 2 A R R L S L S LA R R R R R R P RS PR R 2 2
-- TST_REC_ALIGN - This procedure tests an Ada inﬁlementaticn's abil .ty
-~ to piovide for the a'‘grment of stack allocated and beap-allocat-d
-- records. The tested alignments are 2, 3, 4, and 8. The procedu-e
-- checks the alignment of all compiled records. Of course, correct

-- aligmment could be accidental.

-- Author: R.W. Sebesta
-- Date: July, 1988

with SYSTEM;
with UNCHECKED_CONVERSION;
with TEXT_lO;
use TEXT_10;
procedure TST_REC_ALICN is
package INT_10 is new INTEGER_IO(INTEGER);
use INT_I0O;
function CVI_ADDRESS_TO_INTEGER is new UNCHECKED _CONVERSION
(SOURCE => SYSTEM_ADDRESS, TARGET => INTEGER});

v

-- Test for mod 2 alignment
type REC_1_TYPE is
record
8 : BOOLEAN;
A : INTEGER;
end record;
for REC_1_TYPE use
record at mod 2;
end record;

-- Test for mod 3 alignment
type REC_2_TYPE 1s
record
A : BOOLEAN;
B : INTEGER:
end record;
-- for REC_2_TYPE use
- record at mog 3;
-- end record;

-- Test for mod & alignment
type REC_3_TYPE is
record
A : BOOLEAN;
C : INTEGER;
end record;
for REC_3_TYPE use

44-

Transportability Guidelines for Ada Real-Time Software

record at mod 4;
end record;

- -

-- Test for mod 8 alignment
type REC_4_TYPE is
record
A : BOOLEAN;
D : INTEGER;
end record;
for REC_4_TYPE use
record at mod 8;
end record;

-- Test for mod 16 alignment
type REC_S_TYPE is
record
A : BOOLEAN;
B : INTEGER;
end record/
for REC_5_TYPE use
record at mod 16;
end record;
-- DUM_1, DUM_2, and DUM_3 arz used to force an odd address
-- for records that are supposcd to be even aligned.
« DUM_1 : CHARACTER;
REC_1 : REC_1_TYPE;
== REC_2 : REC_2_TYPE;
DuM_2 : CHARACTER;
REC_3 : REC_3_TYPE; b
~- DUM_3 : CHARACTER;
-+ REC_& : REC_4_TYPE;

type PTR_REC_1_TYPE is access REC_1_TYPE;
type PIR_REC_2_TYPE is access REC_2_TYPE;
type PTR_REC_3_TYPE is access REC_3_TYPE;
type PTR_REC_&_TYPE is access REC_4_TYPE;
type PTR_REC_S_TYPE is access REC_S_TYPE;

function CVT_PTR_REC_1_TYPE_TO_INTEGER is new UNCHECKED _CONVERSION
(SOURCE => PTR_REC_1_TYPE, TARGET => INTEGER);

function CVT_PTR_REC_2_TYPE_TO_INTEGER is new UNCHECKED_CONVERSION
(SOURCE => PTR_REC_2_TYPE, TARGET => INTEGER);

function CVT_PTR_REC_3_TYPE_TO_INTEGER is ncw UNCHECKED CONVERSION
(SOURCE => PTR_REC_3_TYPE, TARGET => INTEGER);

function CVT_PTR_REC_4_TYPE_TO_INTEGER is new UNCHECKED_CONVERSION
(SOURCE => PTR_REC_4_TYPE, TARGET => INTEGER);

function CVT_PTR REC_S_TYPE_TO_INTEGER is new UNCHECKED_CONVERSION

-45-

Transportability Guidelines for Ada Real-Time Software

(SWRCE => PTR_REC_S_TYPE, TARGET => INTEGER);

PIR_REC_1 : PTR_REC_1_TYKE; -
PTR_REC 2 : PTR_REC_2_TYFE:
PYR_RFC_3 : PYR_REC_3_TYPE;
PTR_REC_& : PTR_REC_&_TYPE;
PTR_REC_S : PTR_REC_S TYPE;

begin

if CVT_ADDRESS_TO_INTEGER (REC_1'ADDRESS) mod 2=0
then PUT_LINE ("Mod 2 alignment is OK");
else PUT_LINE ("Mod 2 alignment is incorrect");
end if;

- if CVT_ADDRESS_TO_INTEGER (REC_2'ADDRESS) mod 3 = O
- then PUT_LINE ("Mod 3 alignment is OK");

- else PUT_LINE ("Mod 3 alignment is incorrect");

- end if;

if CvI_AULRESS_TO_INTEGER (REC_3'ADDRESS) mod & = 0
then PUT_LINE ("Mod 4 atignment is OK");
else PUT_LINE ("Mod &4 alignment is incorrect™);
end if;

> if CVT_ADDRESS_TO_INTEGER (REC_4'ADORESS) mod 8 = 0
- then PUT_LINE ("Mnd 8 alignment is OK');

else PUT_LIKE ("Mcd B alignment is incorrect");
.- end if;

PTR_REC_1 := new REC_1_TYPE;

if CVI_PTR_PEC_1_TYPE_TO_INTEGER (PTR_REC_1) mod 2 = 0
then PUT_LINE ("Mod 2 alignment of heap objects is OK");
efse PUT_LINE ("Mod 2 alignment of heap objects is incorrect");
end if;

PTR_REC_2 := new REC_2_TYPE;

if CVI_PTR_REC_2_TYPE_TO_INTEGER (PTR_REC_2) mod 3 = 0
then PUT_LINE ("Mod 3 aligrnment of heap objects is OK");
else PUT_LINE ("Mnd 3 aligrment of heap objects is incorrect");
end if;

PTR_REC_3 := new REC_3_TYPE;

if CVT_PTR_REC_3_TYPE_TO_INTEGER (PTR_REC_3) mod 4 = 0
then PUT_LINE (“"Mod 4 alignment of heap objects is OK");
else PUT_LINE ("Mod & alignment of heap cbjects is incorrect");
end if;

PTR_REC_4 := new REC_&_TYPE;

if CVI_PTR_REC_&_TYPE_TO_INTEGER (PTR_REC 4) mod 8 = 0
then PUT_LINE ("Mod 8 alignment of heap objects is OK");

46-

Transportability Guidelines for Ada Real-Time Software

else PUT_LINE ('Mod 8 alignment of heap objects is incorrect");
end if;

PTR_REC_S := new RZC_S_TYPE;

if CVT_PTR_REC_S_TYPE_TO_INTEGER (PTR_REC_5) mod 16 = 0
then PUT_LINE ("Mod 16 alignment of heap objects is 0K");
else PUT_LINE ("Mod 16 alignment of heap objects is incorrect¥);
end if;

end TST_REC_ALIGN;

Transportability Guidelines for Ada Real-Time Software

R T T YT T Y PR AR P R R R e L 2 R R 2 R 2 A XA S L 2 g
-- STATIC_REC_DATA - This package provides static record alignment

-- data that is imported by the procedure TST_STATIC_REC_ALIGN.

.- The record types in this package are aligned on mod 2, 3, 4, and

-- 8 boundaries.

-- Author: R.W. Sebesta

-- Date: July, 1988

package STATIC_REC_DATA is

type REC_1_TYPE is
record
A : INTEGER;
end record;
for REC_1_TYPE use
record at mod 2;
end record;

-- type RECJé_TvﬁE is
- - record

- B : INTEGER;
-- end record;

-- for REC_2_TYPE use
-- record at mod 3;
-- end record;

type REC_3_TYPE is
record
C : INTEGER;
end record;
for REC_3_TYPE use
record at mod &;
end record;

type REC_4_TYPE is
record
D : INTEGER;
end record;
for REC_4_TYPE use
record at mod 8;
end record;
-- DUM_1, DUM_2, and DUM_3 are used to force odd addresses for
-- the records whase alignments are supposed to be even.
DUM_1 : CHARACTER;
REC_1 : REC_1_TYPE;
-- REC_2 : REC_2_TYPE;
DUM_2 : CHARACTER;

4

Transportability Guidelines for Ada Real-Time Software

REC_3 : REC_3_TYPE;
DUM_3 : CHARACTER;

REC_4 : REC_4_TYPE;
end STATIC_REC_DATA;

-49.

Transportability Guidelines for Ada Reul-Time Software

EER I 2 X 24 v#oo“o0060660000#006#*#000‘9000000000000000000‘00060000#6000 *eé
-~ IST_RIT_NUM - This procedure determines the bit numbering
.- direction of an Ada implementation.
-- Author: R.W. Scbesta
-- Date: July, 1988
with TEXT_I10;
use TEXT_10;
with UNCHECKED_CONVERSION;
procedure ST_BIT_NUM is
type TINY_TYPE is range 0. .;
type SMALL_TYPE is range 0 .. (2 ** 7) - 1}
type BYTE_TYPE is range O .. (2** 8 -1;
type REC_TYPE is

record
TST_BIT : TINY_TYPE;
DuM_1 : SMALL_TYPE;

end record;
for REC_TYPé use
record
iST_BIT at 0 range 0..0;
OUM_31 at 0 range 1..7;
end record;

package BYTE_10 is new INTEGER_IO(BYTE_TYPE);
use B8YTE_10;

function CVT_REC_TYPE_TO_BYTE_TYPE is new UNCHECKED_CONVERSION
(SOURCE => REC_TYPE, TARGET => BYTE_TYPE);

REC : REC_TYPE;
INTS : BYTE_TYPE;

begin
REC.TST_BJT := 1;
REC.DUM_1 := 0;
INT8 := CVT_REC_TYPE_TO_BYTE_TYPE (REC);
if INT8 = 1
then PUT ("This implementation numbers bits right to left");
else if INT8 = 255
then PUT ("This implementation numbers bits left to right');
else
PUT ("The test failed; the value of INT8 is:");
PUT (INTB); NEW_LINE;
end if;
end if;
end TST_BIT_NUM;

Transportability Guidelines for Ada Real-Time Software

EER L S S 2 A R R R I R D R R A L R R P R L P L R L 22 L R S L R L R R T R R R P R 22 22 2 2 d
-- TST_ADDR - This procedure is designed to test an Ada
-- implementation’s capabilities for ADDRESS clauses ani
-- the ADDRESS attribute,
<> Six separate cases are tested:
-- 1. An integer in a package (PKG_SPOT) (static)
2. An integer in a procedure (PROC_SPOT) (stack allocated)
-- 3. An unconstrained array of integers in a procedure (LIST)
4. An integer in a task (TSK_SPOT)
5. The value of a pointer, PTR_1, is compared with
-- PTR_1.all’ADDRESS for equality.
- 6. The implementation is tested to determine whether

.- multidimensional arrays are stored in row-major or
.- column-major order, using the ADDRESS attribute.
.- (Addresses of array eiements could be wrong if the

.- incorrect assumption is made about the order of storage
-- of multidimensional array elements.)

-- the four variables, PGK_SPOT, PROC_SPOT, LIST, and TSK_DPOT,
-- are placed at a specific addresses and then the ADCRESS
.- attribute is used to determine their addresses, which are then printed.

-- Author: R.W. Sebesta
-- Date: July, 1988

-- The VAX Ada function TO_ADCRESS is used in this procedure to

-- convert constants to ADDRESS type for use in address representation
.- clauses. The VAX documentation states that universal constants

-~ will serve as ADDRESS values, but the compiler rejects them.

-- Maybe my documentation is ahead of my compiler version.

with UNCHECKED_CONVERSION;
with TEXT_10;
use TEXT_lO;
with SYSTEM;
procedure TST_ADDR is
function CVT_ADDRESS_TO_INTEGER is new UNCHECKED_CONVERS]ON
(SOURCE => SYSTEM.ADDRESS, TARGET => INTEGER);
package TST_PKG is
procedure PROC (LENGTH : in INTEGER);
task TSK;
end TST_PKG;

package body TST_PKG is
ADOR : INTEGER;
PXG_SPOT : INTEGER;
for PXG_SPOT use at SYSTEM.TO_ADORESS(60);
type UNCONST_LIST 1s array (INTEGER range <>) of INTEGER;
package INT_10 1s new INTEGER_IO(INTEGER);

Transportahility Guidelines for Ada Real-Time Software

use INT_I0O;

procedure PROC (LENGTH: in INTEGER) is
PROC_SPOT : INTEGER;
for PROC_SPOT use at SYSTEM.TO_ADDRESS(72);
LIST : UNCONST_LIST (1 .. LENGTH);
for LIST use at SYSTEM.TO_ADDRESS(84);
type INT_PTR_TYPE is access INTEGER;
function CVI_[NT_PTR_TYPE_TO_INTEGER is new UNCHECKED_CONVERSION
(SOURCE => INT_PTR_TYPE, TARGET => INTEGER);
PTR_1 : INT_PTR_TYPE;
INT_ADDR_1: INTEGER;
INT_ADDR_2: INTEGER;
type MAT_TYPE is array (1..2, 1..2) of INTEGER;
MAT : MAT_TYPE;

begin ,

PUT ("MEMORY_SIZE is:");

PUT (SYSTEM.MEMORY_SIZE); NEW_LINE;

PUT (“Address of PKG_SPOT is (Should be 60):");

PUT (CVT_ADORESS_TO_INTEGER (PKG_SPOT/ADDRESS)); NEW_LINE;
PUT ("Address of PROC_SPOT is (Should be 72):");

PUT (CVT_ADDRESS_TO_INTEGER (PROC_SPOT’ADDRESS)); NEW_LINE;
PUT ("Address of LIST is (Should be 84):%);

PUT (CVT_ADDRESS_TO_INTEGER (LIST’ADDRESS)); NEW_LINE;

PTR_1 := new INTEGER;

PIR_1.all := 42;

INT_ADDR_1 := CVT_INT_PTR_TYPE_TC_INTEGER (PTR_1);

INT_ADDR_2 := CVY_ADDRESS_TO_INTEGER (PTR_).all’ADDRESS);

if INT_ADDR_1 = INT_ADDR_2
then PUT (“The values of PTR_1 and PTR_1.all'ADDRESS are equal");
else PUT ("The valucs of PTR_1 and PTR_1.all'ADDRESS are unequal");
end if;

NEW_LINE;

if CVT_ADDRESS_TO_INTEGER (MAT(1, 2)’ADDRESS) <«
CVT_ADDRESS_TO_INTEGER (MAT(2, 1)’ADDRESS)
then
PUT ("This implementation stores muitidimensional arrays");
PUT (" in row-major order");
else
PUT ("This implementation stores multidimensional arrays");
PUT (" in column-major order");
end if;
NEW_LINE;
end PROC;

task body TSK is

TSK_SPOT : INTEGER;
for TSK_SPOT use at SYSTEM.TO_ADDRESS(96);

.52-

Transportability Guidelines for Ada Real-Time Software

begin

PUT (“Address of TSK_SPOT is (Should be 96):");

PUT (CVT_ADORESS_TO_INTEGER (TSK_SPOT’ADDRESS)); NEW_LINE;
end TSK;

end TST_PKG;
begin

TST_PKG.PROC (10);
end TST_ADOR;

.53

Transportability Guidelines for Ada Real-Time Software

LR A A2 2 2 R A 2R A R 2 R 2 R S e I L A R LI L R R R 2R RV S RS SR 2 2R S A2 L 2 22 3
-- TST_REC_COMP - a procedure to test the capabilities of an
-- Ada system to accept and correctly follow several different
-- specifications of representation clauses for record components.
-- The tested features are:
-- 1. Record components that cross storage unit boundaries.
-- 2. Placing a default size element on a non-boundary.
-- 3. Placing an odd-sized record as a component at a
-- non-boundary in a record.
4. Are single-bit components allowed?
5. Can a 32-bit integer be placed at a non-byte boundary?
-- 6. Can a 32-bit integer be placed at a byte boundary?
7. Can a FLOAT (assumed to be 32 bits) be placed at a non-byte
-- boundary?
-- 8. Can a FLOAT (assumnd to be 32 bits) be placed at a byte
.- boundary?
== 9. Can POSITION be used to compute the bit offset from the
.- beginning of a record to the first bit of a component?

-- Author: R.W. Sebesta

-- Date: July, 1988

with TEXT_10;

use TEXT_l0;

with SYSTEM;

procedure TST_REC_COMP is
package INT_I0 is new INTEGER_ICCINTEGER);
use INT_JjO;
type TINY_TYPE is range 0 .. 1;
type SMALL_TYPE is range 0 .. (2 ** 5) - 1;
type BYTE_TYPE is range 0 .. (2 ** 8) - 1;
type MEDIUM_TYPE is range 0 .. (2 ** 9) - 1;
type BIG_TYPE is range 0 .. (2 ** 18) - 1;
type HUGE_TYPE is range -(2 ** 31) .. (2 ** 31) - 1;

-- Components crossing storage unit boundaries
type REC_1_TYPE is
record
A : SMALL_TYPE;
B : MEDIUM_TYPE;
€ : BIG_TYPE;
end record;
for REC_1_TYPE use
record
Aat 0 range 0 .. &;
8 at 0 range 5 .. 13; -- Crosses byte boundary
C at 0 range 14 .. 31; -- Crosses word boundary
end record;

Transportability Guidelines for Ada Real-Time Software

-- Placing a default size element on a non-boundary

- -

type REC_2_TYPE is
record
A : SMALL_TYPE;
B : BOOLEAN;
C : 8IG_TYPE;
end record;
for REC_2_TYPE use
record
A at 0 range 0 .. &;
8 at 0 range 5 .. 13;
C at 0 range 16 .. 31;
end record;

-~ REC_3_TYPE is a record type for the following test

type REC_3_TYPE is

record
A : SMALL_TYPE; -- 5 bits
8 : MEDIUM_TYPE; -- 9 bits

end record;
for REC_3_TYPE use
record
A at 0 range 0 .. &;
B at 0 range 5 .. 13;
end record;
for REC_3_TYPE’SIZE use 14;

- Test for placing a record of odd size at an odd spot
type REC_4_TYPE is
record
A : SMALL_TYFE;
X : REC_3_TYPE;
end record;
for REC_4_TYPE use
record
A at 0 range 0 .. &;
X at 0 range 5 .. 19;
end record;

-- Test for use of a single-bit component
type REC_S_TYPE is
record
A : SMALL_TYPE;
B : SMALL_TYPE;
€ : SMALL_TYPE;
D : TINY_TYPE;

Transportability Guidelines for Ada Real-Time Software

end record;
for REC_S_TYPE use
record
A at 0 range 0..4;
B at 0 range 5..9;
C at 0 range 10..14;
D at 0 range 15..15;
end record;

-- Test for placing a 32-bit integer on an odd boundary
type REC_6_TYPE is
record
A : SMALL_TYPE;
B : HUGE_TYPE;
end record;
for REC_6_TYPE use
record
A at 0 range 0..4;
8 at 0 range 5..36;
end record;

-- Test for placing a 32-bit integer on a byte boundary
type REC_7_TYPE is
record
A : BYTE_TYPE;
B : HUGE_TYPE;
end record;
for REC_7_TYPE usc
record
A at 0 range 0..7;
B at 1 range 0..31;
end record;

-- Test for placing a FLOAT type at an odd boundary
type REC_8 TYPE is
record
A @ SMALL_TYPE;
B : FLOAT;
end record;
-- for REC_B8_TYPE use
-- record
.- A at 0 range 0..4;
-- B at 0 range 5..36;
-- end record;

.- Test for placing a FLOAT type at a byte boundary

type REC_9_TYPE is

-56-

Transportability Guidelines for Ada Real-Time Software

record
A : BYTE_TYPE;
B : FLOAT; -
end record;
for REC_9_TYPE use
record
A at 0 range 0..7;
B at 1 range 0..3%;
end record;

-- Test of the POSITION attribute
type REC_10_TYPE is
record
A : SMALL_TYPE;
B : MEDIUM_TYPE;
€ : MEDIUM_TYPE;
O : SMALL_TYPE;
end record;
for REC_10_TY¥PE use
record
A at 0 range 0..4;
B at 0 range 5..13;
C at 0 range 14..22;
D at O range 23..27;
end record;

REC_1 : REC_1_TYPE;
REC_2 : REC_Z_TYPE;
REC_3 : REC_3_TYPE;
REC_4 : REC_&4_TYPE;
REC_S : REC_S_TYPE;
REC_6 : REC_6_TYPE;
REC_7 : REC_7_TYPE;
REC_8 : REC_8_TYPE;
REC_9 : REC_9_TYPE;
REC_10 : REC_10_TYPE;
BIT_POS: INTEGER;

begin

PUT_LINE ("The following output indicates correct results");
PUT_LINE (* for an implementation that has storage units");
PUT_LINE (" of 8 bits");

NEW_LINE;

PUT (“For REC_1, the first bit of 8 is (Should be 5):");

PUT (REC_V.B'FIRST_BIT); NEW_LINE;

PUT (“For REC_1, the first bit of C is (Should be 6):");

PUT (REC_1.C'FIRST_BIT); NEW_LINE;

PUT (“for REC_2, the first bit of 8 is (Should be 5):");

PUT (REC_2.B’FIRST_BIT); NEW_LINE;

-57-

Transportability Guidelines for Ada Real-Time Software

PUT ("For REC_2, the first bit of C is (Should be 6):");
PUT (REC_2.C'FIRST_BIT); NEW_LINE;

PUT (“For REC_3, the first bit of B is (Should be 5):%);
PUT (REC_3.B’FIRST_BIT); NEW_LINE;

PUT (“fFor REC_4, the first bit of X is (Should be 5):");
PUT (REC_&4.X'FIRST_BIT); NEW_LINE;

PUT ("For REC_4, the last bit of X is (Should be 19):%);
PUT (REC_4.X'LAST_BIT); NEW_LINE;

PUT (“For REC_5, the first bit of D is (Should be 7):);
PUT (REC_5.D'FIRST_BIT); NEW_LINE;

PUT ("For REC_S, the last bit of D is (Should be 7):%);

PUT (REC_S.D'LAST_BIT); NEW_LINE;

PUT ("For REC_6, the first bit of B is (Should be 5):*);
PUT (REC_6.B'FIRST_BIT); NEW_LINE;

PUT ("For REC_7, the first bit of B is (Should be 0):");
PUT (REC_7.B'FIRST_BIT); NEW_LINE;

PUT ("For REC_8, the first bit of B is (Should be S):");

PUT (REC_8.B'FIRST BIT); NEW_LINE;
PUT ("For REC_9, the first bit of B is (Should be 0):");
PUT (REC_9.B'FIRST_BIT); NEW_LINE;
PUT_LINE (“For REC_10, the bit offset of component D from the “);
PUT ("beginning of the record (via POSITION) is (Should be 23):");
8IT_POS := REC_10.D’POSITION * SYSTEM.STORAGE_UNIT

+ REC_10.D'FIRST_BIT;

PUT (BIT_POS); NEV_LINE;

end TST_REC_COMP;

Transportability Guidelines for Ada Real-Time Software

AEE AL A2 A2 2 S 2 2R R R S L S R T2 2 SRS L ST 2 LRSS L2222 2L 2L T S R e '
=~ TST_UNC_CVS - A procedure to test the capabilities of an
-+ Ada implementation to support unchecked conversions.
~- Tested features:
- 1. Convert a larger integer to a smaller integer
~- 2. Convert a smaller integer to a larger integer
~- 3. Convert an integer to an integer of equal size
-- NOTE: This procedure produces no output. Although testing
.- the correctness of the results of the tested conversions,
.- there is no implementation-independent way of doing it.
-- Author: R.W. Sebesta
-- Date: July, 1988
with UNCHECKED_CONVERSION;
procedure TST_UNC_CVS is
type SHORT_INT_TYPE is range 0 .. (2 ** 8) - ¥;
for SHORT_INT_TYPE’SIZE use 8;
type LONG_INP_1_TYPE is range Q0 ., (2 ** 16) - 1;
for LONG_INT_1_TYPE/SIZE use 16;
type LONG_INT_2_TYPE is range 0 .. (2 ** 16) - 1;
for LONG_INT_2_TYPE’SIZE use 16;

SHORT : SHORT_INT_TYPE;
LONG_1 : LONG_INT_1_TYPE;
LONG_2 : LONG_INT_2_TYPE;

function CVT_SHORT_INT_TYPE_TO_LONG_INT_1_TYPE is new UNCHECKED_CONVERSION
(SOURCE => SHORT_INT_TYPE, TARGET => LONG_INT_1_TYPE);
function CVT_LONG_INT_1_TYPE_TO_SHORT_INT_TYPE is new UNCHECKED_CONVERSION
(SOURCE =>LONG_INT_1_TYPE, TARGET => SHORT_INT_TYPE);
function CVT_LONG_INT_1_TYPE_TO_LONG_INT_2_TYPE is ncw
UNCHECKED_CONVERSION (SOURCE => LONG_INT_1_TYPE,
TARGET => LONG_INT_2_TYPE);

begin

SHORT := 27;

LONG_' := 300;

LONG_2 := 300;

LONG_1 := CVT_SHORT_INT_TYPE_TO_LONG_INT_1_TYPE (SHORT);
SHORT = CVT_LONG_INT_1_TYPE_TO_SHORT_INT_TYPE (LONG_1);
LONG_2 := CVT_LONG_INT_1_TYPE_TO_LONG_INT_2_TYPE (LONG_1);
end TST_UNC_CVS;

-59.

Transportability Guidelines for Ada Real-Time Software

10. Appendix B - Transportability Requirements Report

-

Performance Dependencies: Check if YES
Direct Execution of Interrupt Emtries:)
Rendezvous without context switch optimization:

Other Tasking optimization (explain below): ()

fast propagation of Exceptions to handler:
Use of Package MACHINE_CODE (LOC: H
High Resolution of type DURATION:
High Resolution of type TIME:
Numeric Dependencies:
Specific Rounding Algorithm Required:)
fixed Point Type with ‘Small other than a power of two: ()
Input/Output Dependencies:
Temporary Files:
Shared Files:
FORM Afgument String is used:
Rufferinrg Mechanism is Critical:
Length of File Names Required:
Program Initiation

~ N e~
- e e N

~ e~~~
L

What requirements are placed on the environment task

prior to program initiation? For examole:
How are parameters for the main subprogram made available?
Are interrupts disabled?
Memory parity has been correctly set?

Other:
BIT ORDERING for Representation Clauses:
BIT numbers are equal to respective power of two: ()
BIT numbers are non-standard (as follows): ()

Address Clause Representation:.

Non-Ada Code (HOL) is Used (LOC:):
Implementation Defined Attributes used:

-~ o~
~ o~

-60-

